Advertisement

Analytical and Bioanalytical Chemistry

, Volume 398, Issue 2, pp 1109–1123 | Cite as

A spectroscopic method to estimate the binding potency of amphiphile assemblies

  • D. R. Gauger
  • V. V. Andrushchenko
  • P. Bouř
  • W. Pohle
Original Paper

Abstract

A fast and convenient spectroscopic methodology to determine the water uptake capacity of amphiphile assemblies studied in multilayer films is presented. This method was developed to provide a reliable but relatively simple tool for estimating the binding potency of such complex systems. The water-binding potency represents a general propensity of higher-order systems to bind or embed relevant ligands, such as various non-lipid effectors in the case of artificial lipid membranes. In this sense, the binding potency might contribute to a specific functional role of certain lipids. The essence of the new method is that the calibration of data measured by infrared (IR) spectroscopy against those directly obtained by Karl–Fischer titration (KFT) enables one to replace the expensive chemical–analytical technique by a more comfortable and efficient IR-spectroscopic protocol. This approach combines the easy handling, versatility, and availability of IR spectroscopy with the high accuracy of KFT. The usefulness of the procedure is demonstrated on an example set of six amphiphiles with a common chain length of 18 carbon atoms. Despite this similarity, the binding potency data differ tremendously in a way which can be correlated with the systematic variations introduced into the amphiphile structure. Going further beyond the methodical aspect, the scientific relevance of the data is comprehensively discussed especially in terms of the structural factors that govern the binding potency of amphiphiles. That is favored mainly by fluidity and disfavored mainly by inter-amphiphile binding networks. For phosphatidylcholine, our data are strongly in favor of a particular hydration model that involves primary water binding to phosphate as well as the formation of water semi-clathrates hosting the trimethylammonium moiety. Interestingly, stearylamine and diolein assemblies did not take up any water at all. This unexpected hydrophobicity is due to the unusual structures formed in these latter cases: rigid ammonium amide with a strong hydrogen-bonding/salt bridge network in stearylamine, and patches of inverted micelles in diolein, as revealed by molecular dynamics simulations.

Figure 1

Snapshots of six unit cells from the molecular dynamics simulations performed for the neat DOG60 system under periodic boundary conditions; the snapshots were taken at different times: a) 0 ns; b) 5 ns; c) 7 ns; d) 20 ns. The pictures demonstrate the formation of inverted micelles (b) from the bilayers (a) taken as an arbitrary starting configuration and the successive coalescence of these micelles into “patches” (c,d).

Keywords

Binding potency Infrared spectroscopy Karl–Fischer titration Molecular dynamics Amphiphiles (lipids, surfactants) Hydration 

Notes

Acknowledgments

W.P. and D.R.G. are indebted to Hartmut Liebetrau for technical assistance. P.B. and V.A. thank the Grant Agency of the Czech Republic (grants 203/06/0420, 202/07/0732 and P208/10/0559) and Grant Agency of the Czech Academy of Sciences (A400550702 and A400550701) for financial support of the computational part of this work.

Supplementary material

216_2010_3969_MOESM1_ESM.mpg (3.4 mb)
Movie S1 Trajectory of the first 5 ns of the MD simulations of DOG60 system showing the transition from a bilayer initial structure into a spherical structure (inverted micelle) (MPG 3531 kb)
216_2010_3969_MOESM2_ESM.mpg (5 mb)
Movie S2 Trajectory of the first 5 ns of the MD simulations of DOG60 system hydrated with a layer of water molecules (40 waters per amphiphile thick) showing the separation of DOG and water phases (MPG 5162 kb)
216_2010_3969_MOESM3_ESM.pdf (443 kb)
ESM (PDF 443 kb)

References

  1. 1.
    Texter J (2007) Structure of surfactant and amphiphile assemblies. Taylor & Francis, New YorkGoogle Scholar
  2. 2.
    Tadros TF (2006) Applied surfactants: principles and applications. Wiley VCH, WeinheimGoogle Scholar
  3. 3.
    Dowhan W (1997) Ann Rev Biochem 66:199–232CrossRefGoogle Scholar
  4. 4.
    Marsh D (1990) CRC handbook of lipid bilayers. CRC, Boca RatonGoogle Scholar
  5. 5.
    Koynova R, Caffrey M (1994) Chem Phys Lipids 69:1–34CrossRefGoogle Scholar
  6. 6.
    Koynova R, Caffrey M (1998) Biochim Biophys Acta Rev Biomembranes 1376:91–145Google Scholar
  7. 7.
    Israelachvili JN, Marcelja S, Horn RG (1980) Quart Rev Biophys 13:121–200CrossRefGoogle Scholar
  8. 8.
    Kim K, Ahn T, Yun CH (2003) Biochemistry 42:15377–15387CrossRefGoogle Scholar
  9. 9.
    Rand PR, Parsegian VA (1997) In: Epand RM (ed) Lipid polymorphism and membrane properties, current topics in membranes 44. Academic, San DiegoGoogle Scholar
  10. 10.
    Hauser H (1975) In: Franks F (ed) Water—a comprehensive treatise. Plenum, New YorkGoogle Scholar
  11. 11.
    McIntosh TJ, Magid AD (1993) In: Cevc G (ed) Phospholipids handbook. Marcel Dekker, New YorkGoogle Scholar
  12. 12.
    Jendrasiak L (1996) J Nutr Biochem 7:599–609CrossRefGoogle Scholar
  13. 13.
    Milhaud J (2004) Biochim Biophys Acta 1663:19–51CrossRefGoogle Scholar
  14. 14.
    Casal HL, Mantsch HH (1984) Biochim Biophys Acta 779:381–402Google Scholar
  15. 15.
    Scheuing DR (1991) Fourier transform infrared spectroscopy in colloid and interface science. American Chemical Society, WashingtonGoogle Scholar
  16. 16.
    Lewis RNAH, McElhaney RN (1996) In: Mantsch HH, Chapman D (eds) Infrared spectroscopy of biomolecules. Wiley-Liss, New YorkGoogle Scholar
  17. 17.
    Special volume 96 of Chem Phys Lip (1998) Infrared spectroscopy of membrane lipidsGoogle Scholar
  18. 18.
    Scholz E (1984) Karl Fischer titration. Springer, BerlinGoogle Scholar
  19. 19.
    Scarzello M, Klijn JE, Wagenaar A, Stuart MCA, Hulst R, Engberts JBFN (2006) Langmuir 22:2558–2568CrossRefGoogle Scholar
  20. 20.
    Ohnuki H, Saiki T, Kusakari A, Ichihara M, Izumi M (2008) Thin Solid Films 516:8860–8864CrossRefGoogle Scholar
  21. 21.
    Huang J, Liu Y, Wang X (2008) J Mol Catal Enzym 55:49–54CrossRefGoogle Scholar
  22. 22.
    Sastry M, Kumar A, Mukherjee P (2001) Coll Surf A 181:255–259CrossRefGoogle Scholar
  23. 23.
    Benitez JJ, Kopta S, Diez-Perez I, Sanz F, Ogletree DF, Salmeron M (2003) Langmuir 19:762–765CrossRefGoogle Scholar
  24. 24.
    Lair D, Alexandre S, Valleton JM (2005) Coll Surf B 45:200–208CrossRefGoogle Scholar
  25. 25.
    Stamatatos L, Leventis R, Zuckermann MJ, Silvius JR (1988) Biochemistry 27:3917–3925CrossRefGoogle Scholar
  26. 26.
    Rädler JO, Koltover I, Salditt T, Safinya CR (1997) Science 275:810–840CrossRefGoogle Scholar
  27. 27.
    Jurkiewicz P, Olzynska A, Langner M, Hof M (2006) Langmuir 22:8741–8749CrossRefGoogle Scholar
  28. 28.
    Nishizuka Y (1984) Nature 308:693–698CrossRefGoogle Scholar
  29. 29.
    Nishizuka Y (1986) Science 233:305–311CrossRefGoogle Scholar
  30. 30.
    Liscovich M, Cantley LC (1994) Cell 77:329–334CrossRefGoogle Scholar
  31. 31.
    Siegel DP, Banschbach J, Alford D, Ellens H, Lis LJ, Quinn PJ, Yeagle PL, Bentz J (1989) Biochemistry 28:3703–3709CrossRefGoogle Scholar
  32. 32.
    Churchward MA, Rogasevskaia T, Brandman DM, Khosravani H, Nava Atkinson JK, Coorssen JR, 3976 (2008) Biophys J 94:3976–3986CrossRefGoogle Scholar
  33. 33.
    Damodaran KV, Merz KM Jr (1993) Langmuir 9:1179–1183CrossRefGoogle Scholar
  34. 34.
    Perera L, Essmann U, Berkowitz ML (1996) Langmuir 12:2625–2629CrossRefGoogle Scholar
  35. 35.
    Marrink SJ, de Vries AH, Mark AE (2004) J Phys Chem B 108:750–760CrossRefGoogle Scholar
  36. 36.
    Siu SWI, Vacha R, Jungwirth P, Bockmann RA (2008) J Chem Phys 128:125103CrossRefGoogle Scholar
  37. 37.
    Gauger DR, Selle C, Fritzsche H, Pohle W (2001) J Mol Struct 565–566:25–29CrossRefGoogle Scholar
  38. 38.
    Pohle W, Selle C, Fritzsche H, Bohl M (1997) J Mol Struct 408–409:273–277CrossRefGoogle Scholar
  39. 39.
    Pohle W, Selle C, Fritzsche H, Binder H (1998) Biospectroscopy 4:267–280CrossRefGoogle Scholar
  40. 40.
    Selle C, Pohle W, ibid 281-294Google Scholar
  41. 41.
    Pfeiffer H, Binder H, Klose G, Heremans K (2003) Biochim Biophysica Acta Biomembranes 1609:144–147CrossRefGoogle Scholar
  42. 42.
    Pohle W, Selle C (1996) Chem Phys Lipids 82:191–198CrossRefGoogle Scholar
  43. 43.
    Pohle W, Selle C, Gauger DR, Brandenburg K (2001) J Biomol Struct Dyn 19:351–364Google Scholar
  44. 44.
    Dunkel R, Hahn M, Borisch K, Neumann B, Ruttinger HH, Tschierske C (1998) Liq Cryst 24:211–213CrossRefGoogle Scholar
  45. 45.
    Helmreich B, Hahn M (1999) LaborPraxis 4:64–69Google Scholar
  46. 46.
    Gauger DR, Selle C, Hahn M, Pohle W (2001) Anal Biochem 299:108–110CrossRefGoogle Scholar
  47. 47.
    Bour P, Malon P (1995-2009) MCM molecular graphics. Academy of Sciences, PragueGoogle Scholar
  48. 48.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San FranciscoGoogle Scholar
  49. 49.
    Martinez JM, Martinez L (2003) J Comput Chem 24:819–825CrossRefGoogle Scholar
  50. 50.
    Snyder RG (1961) J Mol Spectrosc 7:116–144CrossRefGoogle Scholar
  51. 51.
    Snyder RG (1979) J Chem Phys 71:3229–3235CrossRefGoogle Scholar
  52. 52.
    Jendrasiak GL, Smith RL (2004) Chem Phys Lipids 131:183–195CrossRefGoogle Scholar
  53. 53.
    Pand RP, Parsigian VA (1989) Biochim Biophys Acta 988:351–376Google Scholar
  54. 54.
    Katsaras J (1997) Biophys J 73:2924–2929CrossRefGoogle Scholar
  55. 55.
    Reck RA, Harwood HJ, Ralston AW (1947) J Org Chem 12:518–522CrossRefGoogle Scholar
  56. 56.
    Crossley A, Freeman IP, Hudson BJF, Pierce JH (1959) J Chem Soc 760-764Google Scholar
  57. 57.
    Tristram-Nagle S, Zhang R, Suter RM, Worthington CRM, Sun W-J, Nagle JF (1993) Biophys J 64:1097–1109CrossRefGoogle Scholar
  58. 58.
    Jiang ZJ, Wu J, Heberle FA, Mills TT, Klawitter P, Huang G, Costanza G, Feigenson GW (2007) Biochim Biophys Acta 1768:2764–2776CrossRefGoogle Scholar
  59. 59.
    Tardieu A, Luzzati V, Reman FC (1973) J Mol Biol 75:711–733CrossRefGoogle Scholar
  60. 60.
    Brunauer S (1943) The adsorption of gases and vapors Vol 1. Princeton University Press, PrincetonGoogle Scholar
  61. 61.
    Gauger DR, Binder H, Vogel A, Selle C, Pohle W (2002) J Mol Struct 614:211–220CrossRefGoogle Scholar
  62. 62.
    de Oliveira Neto M (1986) J Comput Chem 7:617–628, ibid 629-639CrossRefGoogle Scholar
  63. 63.
    Grdadolnik J, Kidric J, Hadzi D (1991) Chem Phys Lipids 59:57–68CrossRefGoogle Scholar
  64. 64.
    Selle C, Pohle W, Fritzsche H (1997) Mikrochim Acta Suppl 14:449–450Google Scholar
  65. 65.
    Pearson RH, Pascher I (1979) Nature 281:499–501CrossRefGoogle Scholar
  66. 66.
    Hsieh CH, Wu WG (1996) Biophys J 71:3278–3287CrossRefGoogle Scholar
  67. 67.
    Mrazkova E, Hobza P, Bohl M, Gauger DR, Pohle W (2005) J Phys Chem B 109:15126–15134CrossRefGoogle Scholar
  68. 68.
    Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, BerlinGoogle Scholar
  69. 69.
    Jeffrey GA (1969) Acc Chem Res 2:344–352CrossRefGoogle Scholar
  70. 70.
    McMullan RK, Mak TCW, Jeffrey GA (1966) J Chem Phys 44:2338–2345CrossRefGoogle Scholar
  71. 71.
    Lipscomb LA, Zhou FX, Williams LD (1996) Biopolymers 38:177–181CrossRefGoogle Scholar
  72. 72.
    Udachin KA, Ripmeester JA (1999) Nature 397:420–423CrossRefGoogle Scholar
  73. 73.
    Zhao W, Moilanen DE, Fenn EE, Fayer D (2008) J Am Chem Soc 30:13927–13937CrossRefGoogle Scholar
  74. 74.
    Bruegel W (1957) Einführung in die Ultrarotspektroskopie. Darmstadt, SteinkopffGoogle Scholar
  75. 75.
    Holy S, Sohar P (1975) Absorption spectra in the infrared region. Akademiai kiado, BudapestGoogle Scholar
  76. 76.
    Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy. Academic, BostonGoogle Scholar
  77. 77.
    Günzler H, Heise HM (1996) IR-Spektroskopie. VCH, WeinheimGoogle Scholar
  78. 78.
    Chalmers JM, Griffiths PR (2002) Handbook of vibrational spectroscopy. Wiley, ChichesterGoogle Scholar
  79. 79.
    Peter K, Vollhardt C (1990) Organische Chemie. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  80. 80.
    Pohle W, Gauger DR (2009) J Mol Struct 924–926:144–147CrossRefGoogle Scholar
  81. 81.
    Spectral database for organic compounds, SDBS, National institute of AIST, JapanGoogle Scholar
  82. 82.
    Pouchert CJ (ed) (1985) The Aldrich library of FT-IR spectra. Aldrich, MilwaukeeGoogle Scholar
  83. 83.
    NIST Chemistry WebBook, NIST Standard Reference Database, GaithersburgGoogle Scholar
  84. 84.
    Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M (2003) J Colloid Interface Sci 264:396–401CrossRefGoogle Scholar
  85. 85.
    Krueger PJ, Smith DW (1967) Can J Chem 45:1605–1610CrossRefGoogle Scholar
  86. 86.
    Hitchcock PB, Mason R, Thomas KM, Shipley GG (1974) Proc Natl Acad Sci USA 71:3036–3040CrossRefGoogle Scholar
  87. 87.
    Akutsu H, Ikematsu M, Kyogoku Y (1981) Chem Phys Lipids 28:149–158CrossRefGoogle Scholar
  88. 88.
    Boggs J (1987) Biochim Biophys Acta 906:353–404Google Scholar
  89. 89.
    Shin TB, Leventis R, Silvius JR (1991) Biochemistry 30:7491–7497CrossRefGoogle Scholar
  90. 90.
    Lewis RNAH, McElhaney RN (1993) Biophys J 64:1081–1096CrossRefGoogle Scholar
  91. 91.
    Pohle W, Selle C, Gauger DR, Zantl R, Artzner F, Rädler JO (2000) Phys Chem Chem Phys 2:4642–4650CrossRefGoogle Scholar
  92. 92.
    Sandermann H Jr (1976) Eur J Biochem/FEBS 62:479–484CrossRefGoogle Scholar
  93. 93.
    Marsh D (1997) Biophys J 72:2834–2836CrossRefGoogle Scholar
  94. 94.
    Schorn K, Marsh D (1996) Biochemistry 35:3831–3836CrossRefGoogle Scholar
  95. 95.
    Dawson RMC, Irvine RF, Bray J, Quinn PJ (1984) Biochem Biophys Res Commun 125:836–842CrossRefGoogle Scholar
  96. 96.
    Huang P, Perez J, Loew G (1994) J Biomol Struct Dyn 11:927–956Google Scholar
  97. 97.
    Thieleman DP, Berendsen HJC (1996) J Chem Phys 105:4871–4880CrossRefGoogle Scholar
  98. 98.
    Binder H, Pohle W (2000) J Phys Chem B 104:12039–12048CrossRefGoogle Scholar
  99. 99.
    Binder H, Kohlstrunk B, Pohle W, ibid:12049–12055Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • D. R. Gauger
    • 1
  • V. V. Andrushchenko
    • 2
  • P. Bouř
    • 2
  • W. Pohle
    • 1
  1. 1.Institute of Biochemistry and BiophysicsFriedrich Schiller University of JenaJenaGermany
  2. 2.Institute of Organic Chemistry and BiochemistryAcademy of SciencesPrague 6Czech Republic

Personalised recommendations