Analytical and Bioanalytical Chemistry

, Volume 399, Issue 7, pp 2313–2329 | Cite as

The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics

  • Ian L. Jones
  • Paolo Livi
  • Marta K. Lewandowska
  • Michele Fiscella
  • Branka Roscic
  • Andreas Hierlemann
Review

Abstract

Planar microelectrode arrays (MEAs) are devices that can be used in biomedical and basic in vitro research to provide extracellular electrophysiological information about biological systems at high spatial and temporal resolution. Complementary metal oxide semiconductor (CMOS) is a technology with which MEAs can be produced on a microscale featuring high spatial resolution and excellent signal-to-noise characteristics. CMOS MEAs are specialized for the analysis of complete electrogenic cellular networks at the cellular or subcellular level in dissociated cultures, organotypic cultures, and acute tissue slices; they can also function as biosensors to detect biochemical events. Models of disease or the response of cellular networks to pharmacological compounds can be studied in vitro, allowing one to investigate pathologies, such as cardiac arrhythmias, memory impairment due to Alzheimer’s disease, or vision impairment caused by ganglion cell degeneration in the retina.

Keywords

Biochips Biosensors Electroanalytical methods Microelectrode array CMOS 

References

  1. 1.
    Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802Google Scholar
  2. 2.
    Cole KS (1949) Dynamic electrical characteristics of the squid axon membrane. Arch Sci Physiol 3(2):253–258Google Scholar
  3. 3.
    Farre C et al (2008) Ion channel screening–automated patch clamp on the rise. Drug Discov Today Tech 5(1):23–28Google Scholar
  4. 4.
    Fromherz P (2002) Electrical interfacing of nerve cells and semiconductor chips. Chemphyschem 3(3):276–284Google Scholar
  5. 5.
    Wise KD et al (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92(1):76–97Google Scholar
  6. 6.
    Olsson R III et al (2005) Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans Biomed Eng 52(7):1303–1311Google Scholar
  7. 7.
    Kleber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84(2):431–488Google Scholar
  8. 8.
    Rutten WL (2002) Selective electrical interfaces with the nervous system. Annu Rev Biomed Eng 4:407–452Google Scholar
  9. 9.
    Jimbo Y, Robinson HP (2000) Propagation of spontaneous synchronized activity in cortical slice cultures recorded by planar electrode arrays. Bioelectrochemistry 51(2):107–115Google Scholar
  10. 10.
    van Pelt J et al (2004) Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Trans Biomed Eng 51(11):2051–2062Google Scholar
  11. 11.
    Morefield SI et al (2000) Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosens Bioelectron 15(7–8):383–396Google Scholar
  12. 12.
    Pancrazio JJ et al (2003) A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection. Biosens Bioelectron 18(11):1339–1347Google Scholar
  13. 13.
    DeBusschere BD, Kovacs GTA (2001) Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens Bioelectron 16(7–8):543–556Google Scholar
  14. 14.
    Taketani M (2006) Advances in network electrophysiology: using multi-electrode arrays. Springer, New YorkGoogle Scholar
  15. 15.
    Voelker M, Fromherz P (2005) Signal transmission from individual mammalian nerve cell to field-effect transistor. Small 1(2):206–210Google Scholar
  16. 16.
    Jenkner M, Muller B, Fromherz P (2001) Interfacing a silicon chip to pairs of snail neurons connected by electrical synapses. Biol Cybern 84(4):239–249Google Scholar
  17. 17.
    Maher MP et al (1999) The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. J Neurosci Methods 87(1):45–56Google Scholar
  18. 18.
    Martinoia S et al (2004) Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experimental data. IEEE Trans Biomed Eng 51(5):859–864Google Scholar
  19. 19.
    Stett A et al (2003) Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 377(3):486–495Google Scholar
  20. 20.
    Heuschkel MO et al (2002) A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Methods 114(2):135–148Google Scholar
  21. 21.
    Jimbo Y et al (2003) A system for MEA-based multisite stimulation. IEEE Trans Biomed Eng 50(2):241–248Google Scholar
  22. 22.
    Baker BJ et al (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25(2):245–282Google Scholar
  23. 23.
    Peterlin ZA et al (2000) Optical probing of neuronal circuits with calcium indicators. Proc Natl Acad Sci U S A 97(7):3619–3624Google Scholar
  24. 24.
    Obaid AL et al (2004) Novel naphthylstyryl-pyridium potentiometric dyes offer advantages for neural network analysis. J Neurosci Methods 134(2):179–190Google Scholar
  25. 25.
    Heer F et al (2007) Single-chip microelectronic system to interface with living cells. Biosens Bioelectron 22(11):2546–2553Google Scholar
  26. 26.
    Grumet AE, Wyatt JL Jr, Rizzo JF 3rd (2000) Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods 101(1):31–42Google Scholar
  27. 27.
    Wagenaar DA et al (2005) Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J Neurosci 25(3):680–688Google Scholar
  28. 28.
    Hafizovic S, Heer F, Ugniwenko T, Frey U, Blau A, Ziegler C, Hierlemann A (2007) CMOS-based microelectrode arrays for interacting with neurons. J. Neurosci Methods 164:93–106Google Scholar
  29. 29.
    Heer F et al (2007) Using microelectronics technology to communicate with living cells. Conf Proc IEEE Eng Med Biol Soc 2007:6082–6085Google Scholar
  30. 30.
    Robinson DL et al (2008) Monitoring rapid chemical communication in the brain. Chem Rev 108(7):2554–2584Google Scholar
  31. 31.
    Thomas CA Jr et al (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74(1):61–66Google Scholar
  32. 32.
    Gross GW et al (1977) A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci Lett 6(2–3):101–105Google Scholar
  33. 33.
    Pine J (1980) Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods 2(1):19–31Google Scholar
  34. 34.
    Bergveld P (2003) Thirty years of ISFETOLOGY—What happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B Chem 88(1):1–20Google Scholar
  35. 35.
    Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17(1):70–71Google Scholar
  36. 36.
    Bergveld P (1972) Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans Biomed Eng 19(5):342–351Google Scholar
  37. 37.
    Jobling DT, Smith JG, Wheal HV (1981) Active microelectrode array to record from the mammalian central nervous system in vitro. Med Biol Eng Comput 19(5):553–560Google Scholar
  38. 38.
    Hutzler M et al (2006) High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J Neurophysiol 96(3):1638–1645Google Scholar
  39. 39.
    Berdondini L et al (2005) High-density electrode array for imaging in vitro electrophysiological activity. Biosens Bioelectron 21(1):167–174Google Scholar
  40. 40.
    Eversmann B et al (2003) A 128 x 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J Solid-State Circuits 38(12):2306–2317Google Scholar
  41. 41.
    Frey U et al (2007) An 11 k-electrode 126-channel high-density microelectrode array to interact with electrogenic cells. In: Solid-state circuits conference, San Francisco, 2007 (ISSCC 2007). Digest of technical papers. IEEE InternationalGoogle Scholar
  42. 42.
    Frey U et al (2009) Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens Bioelectron 24(7):2191–2198Google Scholar
  43. 43.
    Lambacher A et al (2004) Electrical imaging of neuronal activity by multi-transistor-array (MTA) recording at 7.8 μm resolution. Appl Phys A: Mater Sci Process 79(7):1607–1611Google Scholar
  44. 44.
    Imfeld K et al (2007) High-resolution MEA platform for in-vitro electrogenic cell networks imaging. Conf Proc IEEE Eng Med Biol Soc 2007:6086–6089Google Scholar
  45. 45.
    Maccione A et al (2009) Imaging extracellular neuronal signaling on high resolution microelectrode arrays (MEAs). Hippocampal cultures coupled with a high resolution neuroelectronic interface. In: 4th international IEEE/EMBS conference on neural engineering, NER '09, Antalya, 2009Google Scholar
  46. 46.
    Berdondini L et al (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9(18):2644–2651Google Scholar
  47. 47.
    Kovacs GTA (2003) Electronic sensors with living cellular components. Proc IEEE 91(6):915–929Google Scholar
  48. 48.
    Sodagar AM, Wise KD, Najafi K (2007) A fully integrated mixed-signal neural processor for implantable multichannel cortical recording. IEEE Trans Biomed Eng 54(6 Pt 1):1075–1088Google Scholar
  49. 49.
    Wise KD et al (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96(7):1184–1202Google Scholar
  50. 50.
    Heer F et al (2006) CMOS microelectrode array for bidirectional interaction with neuronal networks. IEEE J Solid-State Circuits 41(7):1620–1629Google Scholar
  51. 51.
    Hafizovic S et al (2007) A CMOS-based microelectrode array for interaction with neuronal cultures. J Neurosci Methods 164(1):93–106Google Scholar
  52. 52.
    Livi P et al (2010) Compact voltage and current stimulation buffer for high-density microelectrode arrays. In: Solid-state circuits conference, San Francisco, 2010 (ISSCC 2010). Digest of technical papers. IEEE InternationalGoogle Scholar
  53. 53.
    Greve F et al (2007) Molecular design and characterization of the neuron-microelectrode array interface. Biomaterials 28(35):5246–5258Google Scholar
  54. 54.
    Soussou WV et al (2007) Neuronal network morphology and electrophysiology of hippocampal neurons cultured on surface-treated multielectrode arrays. IEEE Trans Biomed Eng 54(7):1309–1320Google Scholar
  55. 55.
    Egert U et al (1998) A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. Brain Res Brain Res Protoc 2(4):229–242Google Scholar
  56. 56.
    Frey U et al (2009) Depth recording capabilities of planar high-density microelectrode arrays. Proceedings of the 4th international IEEE EMBS conference on neural engineering, Antalya, Turkey, pp 207–210Google Scholar
  57. 57.
    Frey U et al (2009) Unpublished resultsGoogle Scholar
  58. 58.
    Lossi L et al (2009) Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 88(4):221–245Google Scholar
  59. 59.
    Hofmann F et al (2004) Functional re-establishment of the perforant pathway in organotypic co-cultures on microelectrode arrays. Brain Res 1017(1–2):184–196Google Scholar
  60. 60.
    Potter SM (2001) Distributed processing in cultured neuronal networks. Prog Brain Res 130:49–62Google Scholar
  61. 61.
    Frey U et al (2007) Cell recordings with a CMOS high-density microelectrode array. Conf Proc IEEE Eng Med Biol Soc 2007:167–170Google Scholar
  62. 62.
    Alvarez VA, Sabatini BL (2007) Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci 30:79–97Google Scholar
  63. 63.
    Potter SM, DeMarse TB (2001) A new approach to neural cell culture for long-term studies. J Neurosci Methods 110(1–2):17–24Google Scholar
  64. 64.
    Brewer GJ et al (2008) NbActiv4 medium improvement to Neurobasal/B27 increases neuron synapse densities and network spike rates on multielectrode arrays. J Neurosci Methods 170(2):181–187Google Scholar
  65. 65.
    Franks W et al (2007) Patterned cell adhesion by self-assembled structures for use with a CMOS cell-based biosensor. Biosens Bioelectron 22(7):1426–1433Google Scholar
  66. 66.
    Jungblut M et al (2009) Triangular neuronal networks on microelectrode arrays: an approach to improve the properties of low-density networks for extracellular recording. Biomed Microdevices 11(6):1269–1278Google Scholar
  67. 67.
    Frey U (2007) High-density neural interface and microhotplate gas sensor in CMOS technology, in Physical Electronics Laboratory, PEL. 2007. ETH Zurich, Zurich, SwitzerlandGoogle Scholar
  68. 68.
    Gahwiler BH et al (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20(10):471–477Google Scholar
  69. 69.
    Hofmann F, Bading H (2006) Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration. J Physiol Paris 99(2–3):125–132Google Scholar
  70. 70.
    Krause M et al (2008) Altered dendritic integration in hippocampal granule cells of spatial learning-impaired aged rats. J Neurophysiol 99(6):2769–2778Google Scholar
  71. 71.
    Shimono K et al (2002) Chronic multichannel recordings from organotypic hippocampal slice cultures: protection from excitotoxic effects of NMDA by non-competitive NMDA antagonists. J Neurosci Methods 120(2):193–202Google Scholar
  72. 72.
    Jimbo Y, Tateno T, Robinson HP (1999) Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophys J 76(2):670–678Google Scholar
  73. 73.
    Shimono K et al (2000) Origins and distribution of cholinergically induced beta rhythms in hippocampal slices. J Neurosci 20(22):8462–8473Google Scholar
  74. 74.
    Goldberger JJ et al (2008) American Heart Association/American College of Cardiology Foundation/Heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death: a scientific statement from the American Heart Association Council on Clinical Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. Heart Rhythm 5(10):e1–e21Google Scholar
  75. 75.
    Roden DM (2006) Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med 259(1):59–69Google Scholar
  76. 76.
    Piccini JP et al (2009) Current challenges in the evaluation of cardiac safety during drug development: translational medicine meets the Critical Path Initiative. Am Heart J 158(3):317–326Google Scholar
  77. 77.
    Bode G, Olejniczak K (2002) ICH topic: the draft ICH S7B step 2: note for guidance on safety pharmacology studies for human pharmaceuticals. Fundam Clin Pharmacol 16(2):105–118Google Scholar
  78. 78.
    Meyer T et al (2004) Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Saf 27(11):763–772Google Scholar
  79. 79.
    Reppel M et al (2005) The electrocardiogram of human embryonic stem cell-derived cardiomyocytes. J Electrocardiol 38(4 Suppl):166–170Google Scholar
  80. 80.
    Feld Y et al (2002) Electrophysiological modulation of cardiomyocytic tissue by transfected fibroblasts expressing potassium channels: a novel strategy to manipulate excitability. Circulation 105(4):522–529Google Scholar
  81. 81.
    Marom S, Shahaf G (2002) Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Q Rev Biophys 35(1):63–87Google Scholar
  82. 82.
    Sanchez-Bustamante CD et al (2008) Modulation of cardiomyocyte electrical properties using regulated bone morphogenetic protein-2 expression. Tissue Eng A 14(12):1969–1988Google Scholar
  83. 83.
    Reppel M et al (2004) Microelectrode arrays: a new tool to measure embryonic heart activity. J Electrocardiol 37(Supplement 1):104–109Google Scholar
  84. 84.
    Meyer T et al (2004) QT-screen: high-throughput cardiac safety pharmacology by extracellular electrophysiology on primary cardiac myocytes. Assay Drug Dev Technol 2(5):507–514Google Scholar
  85. 85.
    Chang MG et al (2009) Spiral waves and reentry dynamics in an in vitro model of the healed infarct border zone. Circ Res 105(11):1062Google Scholar
  86. 86.
    Davidenko JM et al (1992) Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355(6358):349–351Google Scholar
  87. 87.
    Winfree A (1989) Electrical instability in cardiac muscle: phase singularities and rotors. J Theor Biol 138(3):353–405Google Scholar
  88. 88.
    Hong JH et al (2008) Spiral reentry waves in confluent layer of HL-1 cardiomyocyte cell lines. Biochem Biophys Res Commun 377(4):1269–1273Google Scholar
  89. 89.
    Kanno S, Saffitz JE (2001) The role of myocardial gap junctions in electrical conduction and arrhythmogenesis. Cardiovasc Pathol 10(4):169–177Google Scholar
  90. 90.
    Nattel S et al (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87(2):425Google Scholar
  91. 91.
    Wassle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5(10):747–757Google Scholar
  92. 92.
    Segev R et al (2004) Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat Neurosci 7(10):1154–1161Google Scholar
  93. 93.
    Schwartz G et al (2007) Synchronized firing among retinal ganglion cells signals motion reversal. Neuron 55(6):958–969Google Scholar
  94. 94.
    Sekirnjak C et al (2008) High-resolution electrical stimulation of primate retina for epiretinal implant design. J Neurosci 28(17):4446–4456Google Scholar
  95. 95.
    Zrenner E (2002) Will retinal implants restore vision? Science 295(5557):1022–1025Google Scholar
  96. 96.
    Meister M, Lagnado L, Baylor DA (1995) Concerted signaling by retinal ganglion cells. Science 270(5239):1207–1210Google Scholar
  97. 97.
    Schnitzer MJ, Meister M (2003) Multineuronal firing patterns in the signal from eye to brain. Neuron 37(3):499–511Google Scholar
  98. 98.
    Shlens J, Rieke F, Chichilnisky E (2008) Synchronized firing in the retina. Curr Opin Neurobiol 18(4):396–402Google Scholar
  99. 99.
    Ackert JM et al (2006) Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina. J Neurosci 26(16):4206–4215Google Scholar
  100. 100.
    Brivanlou IH, Warland DK, Meister M (1998) Mechanisms of concerted firing among retinal ganglion cells. Neuron 20(3):527–539Google Scholar
  101. 101.
    Puchalla JL et al (2005) Redundancy in the population code of the retina. Neuron 46(3):493–504Google Scholar
  102. 102.
    Chader GJ, Weiland J, Humayun MS (2009) Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res 175:317–332Google Scholar
  103. 103.
    Rattner A, Sun H, Nathans J (1999) Molecular genetics of human retinal disease. Annu Rev Genet 33:89–131Google Scholar
  104. 104.
    Zrenner E et al (2009) Subretinal microelectrode arrays allow blind retinitis pigmentosa patients to recognize letters and combine them to words. Proceedings of the 2009 2nd international conference on biomedical engineering and informatics (BMEI), p 4Google Scholar
  105. 105.
    Lagali PS et al (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11(6):667–675Google Scholar
  106. 106.
    Elstrott J et al (2008) Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves. Neuron 58(4):499–506Google Scholar
  107. 107.
    Devries SH, Baylor DA (1997) Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J Neurophysiol 78(4):2048–2060Google Scholar
  108. 108.
    Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Network 12(2):199–213Google Scholar
  109. 109.
    Edelman GM (1987) Neural Darwinism: the theory of neuronal group selection. Oxford University Press, OxfordGoogle Scholar
  110. 110.
    MacGregor RJ (1987) Neural and brain modeling. Academic, New YorkGoogle Scholar
  111. 111.
    Rowan MJ et al (2005) Synaptic plasticity disruption by amyloid beta protein: modulation by potential Alzheimer’s disease modifying therapies. Biochem Soc Trans 33(Pt 4):563–567Google Scholar
  112. 112.
    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39Google Scholar
  113. 113.
    Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136Google Scholar
  114. 114.
    Shankar GM et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842Google Scholar
  115. 115.
    Varghese K et al (2009) Microelectrode arrays and Alzheimer’s disease: a novel in vitro investigative paradigm. Alzheimers Dement 5(4, Supplement 1):P428–P428Google Scholar
  116. 116.
    Scott RA, Lhatoo SD, Sander JWAS (2001) The treatment of epilepsy in developing countries: where do we go from here? Bull World Health Organ 79:344–351Google Scholar
  117. 117.
    Hill AJ et al (2009) Development of multi-electrode array screening for anticonvulsants in acute rat brain slices. J Neurosci methodsGoogle Scholar
  118. 118.
    Gross GW et al (1995) The use of neuronal networks on multielectrode arrays as biosensors. Biosens Bioelectron 10(6–7):553–567Google Scholar
  119. 119.
    Streit J (1993) Regular oscillations of synaptic activity in spinal networks in vitro. J Neurophysiol 70(3):871Google Scholar
  120. 120.
    Gross GW et al (1997) Odor, drug and toxin analysis with neuronal networks in vitro: extracellular array recording of network responses. Biosens Bioelectron 12(5):373–393Google Scholar
  121. 121.
    Gramowski A, Schiffmann D, Gross G (2000) Quantification of acute neurotoxic effects of trimethyltin using neuronal networks cultured on microelectrode arrays. Neurotoxicology 21(3):331Google Scholar
  122. 122.
    Gramowski A et al (2004) Substance identification by quantitative characterization of oscillatory activity in murine spinal cord networks on microelectrode arrays. Eur J Neurosci 19(10):2815–2825Google Scholar
  123. 123.
    Shahaf G, Marom S (2001) Learning in networks of cortical neurons. J Neurosci 21(22):8782–8788Google Scholar
  124. 124.
    Arnold FJ et al (2005) Microelectrode array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis-dependent plasticity. J Physiol 564(Pt 1):3–19Google Scholar
  125. 125.
    Bal-Price AK et al (2008) Application of in vitro neurotoxicity testing for regulatory purposes: symposium III summary and research needs. Neurotoxicology 29(3):520–531Google Scholar
  126. 126.
    Gross GW, Schwalm FU (1994) A closed flow chamber for long-term multichannel recording and optical monitoring. J Neurosci Methods 52(1):73–85Google Scholar
  127. 127.
    Czarnecki A, Magloire V, Streit J (2008) Local oscillations of spiking activity in organotypic spinal cord slice cultures. Eur J Neurosci 27(8):2076–2088Google Scholar
  128. 128.
    Tscherter A et al (2001) Spatiotemporal characterization of rhythmic activity in rat spinal cord slice cultures. Eur J Neurosci 14(2):179–190Google Scholar
  129. 129.
    Honma S, Honma K (2003) The biological clock: Ca2+ links the pendulum to the hands. Trends Neurosci 26(12):650–653Google Scholar
  130. 130.
    Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676Google Scholar
  131. 131.
    Hierlemann A, Baltes H (2003) CMOS-based chemical microsensors. Analyst 128(1):15–28Google Scholar
  132. 132.
    Sawada K et al (2005) A novel fused sensor for photo-and ion-sensing. Sens Actuators B Chem 106(2):614–618Google Scholar
  133. 133.
    Joo S, Brown RB (2008) Chemical sensors with integrated electronics. Chem Rev 108(2):638–651Google Scholar
  134. 134.
    Ryabtsev S et al (1999) Application of semiconductor gas sensors for medical diagnostics. Sens Actuators B 59(1):26–29Google Scholar
  135. 135.
    Stagni C et al (2007) A fully electronic label-free DNA sensor chip. IEEE Sens J 7(4):577–585Google Scholar
  136. 136.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  137. 137.
    Heer F, Keller M, Yu G, Janata J, Josowicz M, Hierlemann A (2008) CMOS electro-chemical DNA-detection array with on-chip ADC. In: Proceedings of the IEEE International solid-state circuits conference (ISSCC), San Francisco, 2008Google Scholar
  138. 138.
    Aiyejorun T, Thompson L, Kowalik J, Josowicz M, Janata J (2005) Control of chloride ion exchange by DNA hybridization at polypyrrole electrode. Perspec Bioanal 1:331–344Google Scholar
  139. 139.
    Stagni C et al (2006) CMOS DNA sensor array with integrated A/D conversion based on label-free capacitance measurement. IEEE J Solid-State Circuits 41(12):2956–2964Google Scholar
  140. 140.
    Anderson E, Daniels J, Yu H, Lee T, Pourmand N (2008) A label-free CMOS DNA microarray based on charge sensing. In: Proceedings of the IEEE instrumentation and measurement technology conference, Vancouver Island, 12–15 May, 2008Google Scholar
  141. 141.
    Pourmand N et al (2006) Direct electrical detection of DNA synthesis. Proc Natl Acad Sci U S A 103(17):6466Google Scholar
  142. 142.
    Borland L, Michael A (2007) An introduction to electrochemical methods in neuroscience, CRC, Boca RatonGoogle Scholar
  143. 143.
    Frey O (2010) Biosensor microprobe array for in vivo monitoring of neurotransmitters. EPF Lausanne, SwitzerlandGoogle Scholar
  144. 144.
    Laubender E et al (2009) Polymer composite coated multifiber array microelectrodes as multifunctional voltammetric microsensor for the detection of dopamineGoogle Scholar
  145. 145.
    Janata J (2008) Principles of chemical sensors, 2nd edn. Springer, DordrechtGoogle Scholar
  146. 146.
    Bolton EK et al (2002) Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actuators B Chem 85(1-2):179–185Google Scholar
  147. 147.
    Huang TCD, Sorgenfrei S et al (2009) A 0.18-μm CMOS array sensor for integrated time-resolved fluorescence detection. IEEE J Solid-State Circuits 44(5):1644–1654Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ian L. Jones
    • 1
  • Paolo Livi
    • 1
  • Marta K. Lewandowska
    • 1
  • Michele Fiscella
    • 1
  • Branka Roscic
    • 1
  • Andreas Hierlemann
    • 1
  1. 1.Department Biosystems Science and Engineering (BSSE)Eidgenössische Technische Hochschule Zürich (ETHZ)BaselSwitzerland

Personalised recommendations