Analytical and Bioanalytical Chemistry

, Volume 398, Issue 1, pp 405–413 | Cite as

Simultaneous sampling of volatile and non-volatile analytes in beer for fast fingerprinting by extractive electrospray ionization mass spectrometry

  • Liang Zhu
  • Zhong Hu
  • Gerardo Gamez
  • Wai Siang Law
  • HuanWen Chen
  • ShuiPing Yang
  • Konstantin Chingin
  • Roman M. Balabin
  • Rui Wang
  • TingTing Zhang
  • Renato Zenobi
Original Paper

Abstract

By gently bubbling nitrogen gas through beer, an effervescent beverage, both volatile and non-volatile compounds can be simultaneously sampled in the form of aerosol. This allows for fast (within seconds) fingerprinting by extractive electrospray ionization mass spectrometry (EESI-MS) in both negative and positive ion mode, without the need for any sample pre-treatment such as degassing and dilution. Trace analytes such as volatile esters (e.g., ethyl acetate and isoamyl acetate), free fatty acids (e.g., caproic acid, caprylic acid, and capric acid), semi/non-volatile organic/inorganic acids (e.g., lactic acid), and various amino acids, commonly present in beer at the low parts per million or at sub-ppm levels, were detected and identified based on tandem MS data. Furthermore, the appearance of solvent cluster ions in the mass spectra gives insight into the sampling and ionization mechanisms: aerosol droplets containing semi/non-volatile substances are thought to be generated via bubble bursting at the surface of the liquid; these neutral aerosol droplets then collide with the charged primary electrospray ionization droplets, followed by analyte extraction, desolvation, ionization, and MS detection. With principal component analysis, several beer samples were successfully differentiated. Therefore, the present study successfully extends the applicability of EESI-MS to the direct analysis of complex liquid samples with high gas content.

Figure

By gently bubbling nitrogen gas through beer, both volatile and non-volatile compounds can be simultaneously sampled in the form of aerosol for further analysis, allowing fast chemically fingerprinting using extractive electrospray ionization mass spectrometry (EESI-MS).

Keywords

Extractive electrospray ionization Beer analysis EESI mechanism 

Supplementary material

216_2010_3945_MOESM1_ESM.pdf (576 kb)
ESM 1(PDF 125 kb)

References

  1. 1.
    Verstrepen KJ, Derdelinckx G, Dufour JP, Winderickx J, Thevelein JM, Pretorius IS, Delvaux FR (2003) J Biosci Bioeng 96:110–118Google Scholar
  2. 2.
    Nagao Y, Kodama H, Yamaguchi T, Yonezawa T, Taguchi A, Fujino S, Morimoto K, Fushiki T (1999) Biosci Biotechnol Biochem 63:468–473CrossRefGoogle Scholar
  3. 3.
    Basarova G, Janousek J (2000) Kvasny Prumysl 46:314–318Google Scholar
  4. 4.
    De Stefano A, Montanari L (1996) Alcologia 8:43–45Google Scholar
  5. 5.
    Dewaele C, Verzele M (1980) J Chromatogr 197:189–197CrossRefGoogle Scholar
  6. 6.
    Degelmann P, Becker M, Herderich M, Humpf HU (1999) Chromatographia 49:543–546CrossRefGoogle Scholar
  7. 7.
    Kutlan D, Molnar-Perl I (2002) Elsevier Science Bv, Montreal, Canada, pp 311–322Google Scholar
  8. 8.
    Toriba A, Adzuma K, Santa T, Imai K (2000) Anal Chem 72:732–739CrossRefGoogle Scholar
  9. 9.
    Cortacero-Ramirez S, de Castro MHB, Segura-Carretero A, Cruces-Blanco C, Fernandez-Gutierrez A (2003) TrAC, Trends Anal Chem 22:440–455CrossRefGoogle Scholar
  10. 10.
    Engstrom A, Andersson PE, Josefsson B, Pfeffer WD (1995) Anal Chem 67:3018–3022CrossRefGoogle Scholar
  11. 11.
    Klampfl CWJ (1999) Agric Food Chem 47:987–990CrossRefGoogle Scholar
  12. 12.
    Stevens JF, Taylor AW, Deinzer ML (1999) J Chromatogr A 832:97–107CrossRefGoogle Scholar
  13. 13.
    Rong H, Zhao Y, Lazou K, De Keukeleire D, Milligan SR, Sandra P (2000) Chromatographia 51:545–552CrossRefGoogle Scholar
  14. 14.
    Alcazar A, Pablos F, Martin MJ, Gonzalez AG (2002) Talanta 57:45–52CrossRefGoogle Scholar
  15. 15.
    Asfaw A, Wibetoe G (2005) Microchim Acta 152:61–68CrossRefGoogle Scholar
  16. 16.
    Flamini R, Panighel A (2006) Mass Spectrom Rev 25:741–774CrossRefGoogle Scholar
  17. 17.
    Flamini R (2003) Mass Spectrom Rev 22:218–250CrossRefGoogle Scholar
  18. 18.
    Araujo AS, da Rocha LL, Tomazela DM, Sawaya A, Almeida RR, Catharino RR, Eberlin MN (2005) Analyst 130:884–889CrossRefGoogle Scholar
  19. 19.
    Mauri P, Minoggio M, Simonetti P, Gardana C, Pietta P (2002) Rapid Commun Mass Spectrom 16:743–748CrossRefGoogle Scholar
  20. 20.
    Moriwaki H, Hagiwara A, Takasaki M, Izumi F, Watanabe A, Shimizu R, Kuribayashi N, Totani Y, Suzuki Y (2010) Anal Sci 26:379–382CrossRefGoogle Scholar
  21. 21.
    Moller JKS, Catharino RR, Eberlin MN (2005) Analyst 130:890–897CrossRefGoogle Scholar
  22. 22.
    Cooper HJ, Marshall AG (2001) J Agric Food Chem 49:5710–5718CrossRefGoogle Scholar
  23. 23.
    Mugo SM, Bottaro CS (2008) Rapid Commun Mass Spectrom 22:1087–1093CrossRefGoogle Scholar
  24. 24.
    Suslick KS (1990) Science 247:1439–1445CrossRefGoogle Scholar
  25. 25.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Science 306:471–473CrossRefGoogle Scholar
  26. 26.
    Chen HW, Talaty NN, Takats Z, Cooks RG (2005) Anal Chem 77:6915–6927CrossRefGoogle Scholar
  27. 27.
    Venter A, Nefliu M, Cooks RG (2008) Trac-Trend Anal Chem 27:284–290CrossRefGoogle Scholar
  28. 28.
    Ifa DR, Jackson AU, Paglia G, Cooks RG (2009) Anal Bioanal Chem 394:1995–2008CrossRefGoogle Scholar
  29. 29.
    Yang SP, Ding JH, Zheng J, Hu B, Li JQ, Chen HW, Zhou ZQ, Qiao XL (2009) Anal Chem 81:2426–2436CrossRefGoogle Scholar
  30. 30.
    Chen HW, Zheng J, Zhang X, Luo MB, Wang ZC, Qiao XL (2007) J Mass Spectrom 42:1045–1056CrossRefGoogle Scholar
  31. 31.
    Chen HW, Liang HZ, Ding JH, Lai JH, Huan YF, Qiao XL (2007) J Agric Food Chem 55:10093–10100CrossRefGoogle Scholar
  32. 32.
    Cody RB, Laramee JA, Durst HD (2005) Anal Chem 77:2297–2302CrossRefGoogle Scholar
  33. 33.
    Williams JP, Patel VJ, Holland R, Scrivens JH (2006) Rapid Commun Mass Spectrom 20:1447–1456CrossRefGoogle Scholar
  34. 34.
    Moffat AC, Cody RB, Jee RD, O'Neil AJ (2007) J Pharm Pharmacol 59:A26–A26Google Scholar
  35. 35.
    Kpegba K, Spadaro T, Cody RB, Nesnas N, Olson JA (2007) Anal Chem 79:5479–5483CrossRefGoogle Scholar
  36. 36.
    Shiea J, Huang MZ, Hsu HJ, Lee CY, Yuan CH, Beech I, Sunner J (2005) Rapid Commun Mass Spectrom 19:3701–3704CrossRefGoogle Scholar
  37. 37.
    Cheng CY, Yuan CH, Cheng SC, Huang MZ, Chang HC, Cheng TL, Yeh CS, Shiea J (2008) Anal Chem 80:7699–7705CrossRefGoogle Scholar
  38. 38.
    McEwen C, Gutteridge S (2007) J Am Soc Mass Spectrom 18:1274–1278CrossRefGoogle Scholar
  39. 39.
    McEwen CN, McKay RG, Larsen BS (2005) Anal Chem 77:7826–7831CrossRefGoogle Scholar
  40. 40.
    Eberlin LS, Abdelnur PV, Passero A, de Sa GF, Daroda RJ, de Souza V, Eberlin MN (2009) Analyst 134:1652–1657CrossRefGoogle Scholar
  41. 41.
    Haddad R, Sparrapan R, Kotiaho T, Eberlin MN (2008) Anal Chem 80:898–903CrossRefGoogle Scholar
  42. 42.
    Jecklin MC, Gamez G, Touboul D, Zenobi R (2008) Rapid Commun Mass Spectrom 22:2791–2798CrossRefGoogle Scholar
  43. 43.
    Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, Hieftje GM (2008) Anal Chem 80:2646–2653CrossRefGoogle Scholar
  44. 44.
    Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, Hieftje GM (2008) Anal Chem 80:2654–2663CrossRefGoogle Scholar
  45. 45.
    Harper JD, Charipar NA, Mulligan CC, Zhang XR, Cooks RG, Ouyang Z (2008) Anal Chem 80:9097–9104CrossRefGoogle Scholar
  46. 46.
    Huang GM, Zheng OY, Cooks RG (2009) Chem Commun 5:556–558CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Ma XX, Zhang SC, Yang CD, Ouyang Z, Zhang XR (2009) Analyst 134:176–181CrossRefGoogle Scholar
  48. 48.
    Chen HW, Venter A, Cooks RG (2006) Chem Commun 19:2042–2044CrossRefGoogle Scholar
  49. 49.
    Gu HW, Chen HW, Pan ZZ, Jackson AU, Talaty N, Xi BW, Kissinger C, Duda C, Mann D, Raftery D, Cooks RG (2007) Anal Chem 79:89–97CrossRefGoogle Scholar
  50. 50.
    Chen HW, Wortmann A, Zhang WH, Zenobi R (2007) Angew Chem Int Ed 46:580–583CrossRefGoogle Scholar
  51. 51.
    Chen H, Yang S, Wortmann A, Zenobi R (2007) Angew Chem Int Ed 46:7591–7594CrossRefGoogle Scholar
  52. 52.
    Zhu L, Gamez G, Chen HW, Huang HX, Chingin K, Zenobi R (2008) Rapid Commun Mass Spectrom 22:2993–2998CrossRefGoogle Scholar
  53. 53.
    Zhu L, Gamez G, Chen HW, Chingin K, Zenobi R (2009) Chem Commun 5:559–561CrossRefGoogle Scholar
  54. 54.
    Chingin K, Gamez G, Chen HW, Zhu L, Zenobi R (2008) Rapid Commun Mass Spectrom 22:2009–2014CrossRefGoogle Scholar
  55. 55.
    Jackson AU, Werner SR, Talaty N, Song Y, Campbell K, Cooks RG, Morgan JA (2008) Anal Biochem 375:272–281CrossRefGoogle Scholar
  56. 56.
    Ding JH, Yang SP, Liang DP, Chen HW, Wu ZZ, Zhang LL, Ren YL (2009) Analyst 134:2040–2050CrossRefGoogle Scholar
  57. 57.
    Chen HW, Zenobi R (2008) Nat Protoc 3:1467–1475CrossRefGoogle Scholar
  58. 58.
    Chingin K, Chen H, Gamez G, Zhu L, Zenobi R (2009) Anal Chem 81:123–129CrossRefGoogle Scholar
  59. 59.
    Chen HW, Hu B, Hu Y, Huan YF, Zhou JG, Qiao XL (2008) J Am Soc Mass Spectrom 20:719–722CrossRefGoogle Scholar
  60. 60.
    Chen HW, Wortmann A, Zenobi R (2007) J Mass Spectrom 42:1123–1135CrossRefGoogle Scholar
  61. 61.
    Law WS, Chen HW, Ding JH, Yang SP, Zhu L, Gamez G, Chingin K, Ren YL, Zenobi R (2009) Angew Chem Int Ed 48:8277–8280CrossRefGoogle Scholar
  62. 62.
    Walsh KP, McLaughlan RG (1999) Water Air Soil Pollut 115:525–534CrossRefGoogle Scholar
  63. 63.
    Sbrana E, Spinetti M, Secco F, Raspi G (2002) Polyhedron 21:1475–1479CrossRefGoogle Scholar
  64. 64.
    Vallebona G, Banchini G, Borraccini A, Raspi G (1988) Fresenius Z Anal Chem 331:584–587CrossRefGoogle Scholar
  65. 65.
    Kuo YM, Wang CS (1999) J Aerosol Sci 30:1171–1179CrossRefGoogle Scholar
  66. 66.
    Horak T, Culik J, Jurkova M, Cejka P, Kellner V, Bruges (2008) Elsevier Science Bv, Belgium, pp 96–99Google Scholar
  67. 67.
    Cajka T, Riddellova K, Tomaniova M, Hajslova J (2010) J Chromatogr A 1217:4195–4203Google Scholar
  68. 68.
    Couldwell AM, Thomas MC, Mitchell TW, Hulbert AJ, Blanksby SJ (2005) Rapid Commun Mass Spectrom 19:2295–2304CrossRefGoogle Scholar
  69. 69.
    Newitt DM, Dombrowski N, Knelan FH (1954) Trans Inst Chem Eng 32:244–261Google Scholar
  70. 70.
    Dixon RB, Sampson JS, Muddiman DC (2009) J Am Soc Mass Spectrom 20:597–600CrossRefGoogle Scholar
  71. 71.
    Kebarle P (2000) J Mass Spectrom 35:804–817CrossRefGoogle Scholar
  72. 72.
    Onishi A, Proudlove MO (1994) J Sci Food Agric 65:233–240CrossRefGoogle Scholar
  73. 73.
    Evans DE, Sheehan MC, Stewart DC (1999) J Inst Brew 105:171–177Google Scholar
  74. 74.
    Depraetere SA, Delvaux F, Coghe S, Delvaux FR (2004) J Inst Brew 110:200–206Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Liang Zhu
    • 1
  • Zhong Hu
    • 2
  • Gerardo Gamez
    • 1
    • 3
  • Wai Siang Law
    • 1
  • HuanWen Chen
    • 2
  • ShuiPing Yang
    • 2
  • Konstantin Chingin
    • 1
  • Roman M. Balabin
    • 1
  • Rui Wang
    • 1
  • TingTing Zhang
    • 2
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland
  2. 2.Applied Chemistry DepartmentEast China Institute of TechnologyFuzhouChina
  3. 3.Laboratory for Mechanics of Materials and Nanostructures, EMPAThunSwitzerland

Personalised recommendations