Analytical and Bioanalytical Chemistry

, Volume 398, Issue 6, pp 2451–2469 | Cite as

Recent advances in analytical and bioanalysis applications of noble metal nanorods

  • Ilaria Mannelli
  • M.-Pilar Marco


In the last decade the use of anisotropic nanoparticles in analytical and bioanalytical applications has increased substantially. In particular, noble metal nanorods have unique optical properties that have attracted the interest of many research groups. The localized surface plasmon resonance (LSPR) generated by interaction of light at a specific wavelength with noble metal nanoparticles was found to depend on particle size and shape and on the constituting material and the surrounding dielectric solution. Because of their anisotropic shape, nanorods are characterized by two LSPR peaks: the transverse, fixed at approximately 530 nm, and the longitudinal, which is in the visible–near infra-red region of the spectrum and varies with nanorod aspect ratio. The intense surface plasmon band enables nanorods to absorb and scatter light in the visible and near infra-red regions, and fluorescence and two-photon induced luminescence are also observed. These optical properties, with the reactivity towards binding events that induce changes in the refractive index of the surrounding solution, make nanorods a useful tool for tracking binding events in different applications, for example assembly, biosensing, in-vivo targeting and imaging, and single-molecule detection by surface-enhanced Raman spectroscopy. This review presents the promising strategies proposed for functionalizing gold nanorods and their successful use in a variety of analytical and biomedical applications.


Gold nanorod Nanorod functionalization (Bio)analytical applications 



This work has been supported by the Ministry of Science and Innovation (contract number DEP2007-73224-C03-01) and by ENIAC Joint Undertaking Action (ENIAC-2010-120215). The AMR group is a Grup de Recerca de la Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació la Generalitat de Catalunya (expedient 2009 SGR 1343). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. Ilaria Mannelli thanks the JAE-doc action, founded by Junta para la Ampliación de Estudios e Investigaciones Científicas.


  1. 1.
    Murray WA, Barnes W (2007) Plasmonic Materials. Adv Mater 19:3771–3782CrossRefGoogle Scholar
  2. 2.
    Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J Phys Chem B 109:13857–13870CrossRefGoogle Scholar
  3. 3.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: Synthesis, characterization and applications. Coord Chem Rev 249:1870–1901CrossRefGoogle Scholar
  4. 4.
    Willets KA, Van Duyne RP (2007) Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  5. 5.
    Huang HJ, Yu C, Chang HC, Chiu KP, Ming Chen H, Liu RS, Tsai DP (2007) Plasmonic optical properties of a single gold nano-rod. Opt Express 15:7132–7139CrossRefGoogle Scholar
  6. 6.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  7. 7.
    Lee K, El-Sayed MA (2006) Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. J Phys Chem B 110:19220–19225CrossRefGoogle Scholar
  8. 8.
    Hu M, Novo C, Funston A, Wang H, Staleva H, Zou S, Mulvaney P, Xia Y, Hartland GV (2008) Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J Mater Chem 18:1949–1960CrossRefGoogle Scholar
  9. 9.
    Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles. Langmuir 24:5233–5237CrossRefGoogle Scholar
  10. 10.
    Otte MA, Sepúlveda B, Ni W, Juste JP, Liz-Marzán LM, Lechuga LM (2010) Identification of the Optimal Spectral Region for Plasmonic and Nanoplasmonic Sensing. ACS Nano 4:349–357CrossRefGoogle Scholar
  11. 11.
    Yang J, Wu J, Wu Y, Wang J, Chen C (2005) Organic solvent dependence of plasma resonance of gold nanorods: A simple relationship. Chem Phys Lett 416:215–219CrossRefGoogle Scholar
  12. 12.
    Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4:244–251CrossRefGoogle Scholar
  13. 13.
    Huang H, He C, Zeng Y, Xia X, Yu X, Yi P, Chen Z (2009) A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance. Biosens Bioelectron 24:2255–2259CrossRefGoogle Scholar
  14. 14.
    Huang H, Tang C, Zeng Y, Yu X, Liao B, Xia X, Yi P, Chu PK (2009) Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods. Colloids Surf B Biointerfaces 71:96–101CrossRefGoogle Scholar
  15. 15.
    Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 544–557Google Scholar
  16. 16.
    Uechi I, Yamada S (2008) Photochemical and analytical applications of gold nanoparticles and nanorods utilizing surface plasmon resonance. Anal Bioanal Chem 391:2411–2421CrossRefGoogle Scholar
  17. 17.
    Nusz GJ, Curry AC, Marinakos SM, Wax A, Chilkoti A (2009) Rational Selection of Gold Nanorod Geometry for Label-Free Plasmonic Biosensors. ACS Nano 3:795–806CrossRefGoogle Scholar
  18. 18.
    Chu M, Myroshnychenko V, Chen CH, Deng J, Mou C, García de Abajo FJ (2009) Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam. Nano Lett 9:399–404CrossRefGoogle Scholar
  19. 19.
    Payne EK, Shuford KL, Park S, Schatz GC, Mirkin CA (2006) Multipole Plasmon Resonances in Gold Nanorods. J Phys Chem B 110:2150–2154CrossRefGoogle Scholar
  20. 20.
    Brioude A, Jiang XC, Pileni MP (2005) Optical Properties of Gold Nanorods: DDA Simulations Supported by Experiments. J Phys Chem B 109:13138–13142CrossRefGoogle Scholar
  21. 21.
    Chen C, Cheng S, Chau L, Wang CC (2007) Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens Bioelectron 22:926–932CrossRefGoogle Scholar
  22. 22.
    Marinakos SM, Chen S, Chilkoti A (2007) Plasmonic Detection of a Model Analyte in Serum by a Gold Nanorod Sensor. Anal Chem 79:5278–5283CrossRefGoogle Scholar
  23. 23.
    Li C, Male KB, Hrapovic S, Luong JHT (2005) Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem Commun 3924–3926Google Scholar
  24. 24.
    Eustis S, El-Sayed M (2005) Aspect Ratio Dependence of the Enhanced Fluorescence Intensity of Gold Nanorods: Experimental and Simulation Study. J Phys Chem B 109:16350–16356CrossRefGoogle Scholar
  25. 25.
    Alekseeva AV, Bogatyrev VA, Dykman LA, Khlebtsov BN, Trachuk LA, Melnikov AG, Khlebtsov NG (2005) Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. Appl Opt 44:6285–6295CrossRefGoogle Scholar
  26. 26.
    Zhu J, Huang L, Zhao J, Wang Y, Zhao Y, Hao L, Lu Y (2005) Shape dependent resonance light scattering properties of gold nanorods. Mater Sci Eng, B 121:199–203CrossRefGoogle Scholar
  27. 27.
    Imura K, Nagahara T, Okamoto H (2005) Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes. J Phys Chem B 109:13214–13220CrossRefGoogle Scholar
  28. 28.
    Nikoobakht B, El-Sayed MA (2003) Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  29. 29.
    Sau TK, Murphy CJ (2004) Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir 20:6414–6420CrossRefGoogle Scholar
  30. 30.
    Nikoobakht B, El-Sayed MA (2001) Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods. Langmuir 17:6368–6374CrossRefGoogle Scholar
  31. 31.
    Connor E, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity13. Small 1:325–327CrossRefGoogle Scholar
  32. 32.
    Huff TB, Hansen MN, Zhao Y, Cheng J, Wei A (2007) Controlling the Cellular Uptake of Gold Nanorods. Langmuir 23:1596–1599CrossRefGoogle Scholar
  33. 33.
    Shibu Joseph ST, Ipe BI, Pramod P, Thomas KG (2006) Gold Nanorods to Nanochains: Mechanistic Investigations on Their Longitudinal Assembly Using α, ω-Alkanedithiols and Interplasmon Coupling. J Phys Chem B 110:150–157CrossRefGoogle Scholar
  34. 34.
    Yu C, Irudayaraj J (2007) Multiplex Biosensor Using Gold Nanorods. Anal Chem 79:572–579CrossRefGoogle Scholar
  35. 35.
    Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347CrossRefGoogle Scholar
  36. 36.
    Pierrat S, Zins I, Breivogel A, Sonnichsen C (2007) Self-Assembly of Small Gold Colloids with Functionalized Gold Nanorods. Nano Lett 7:259–263CrossRefGoogle Scholar
  37. 37.
    Wang ZL, Mohamed MB, Link S, El-Sayed MA (1999) Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf Sci 440:L809–L814CrossRefGoogle Scholar
  38. 38.
    Kim F, Song JH, Yang P (2002) Photochemical Synthesis of Gold Nanorods. J Am Chem Soc 124:14316–14317CrossRefGoogle Scholar
  39. 39.
    Jana NR, Gearheart L, Murphy CJ (2001) Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J Phys Chem B 105:4065–4067CrossRefGoogle Scholar
  40. 40.
    Khanal BP, Zubarev E (2007) Rings of Nanorods. Angew Chem Int Ed 46:2195–2198CrossRefGoogle Scholar
  41. 41.
    Yang D, Cui D (2008) Advances and Prospects of Gold Nanorods. Chem Asian J 3:2010–2022CrossRefGoogle Scholar
  42. 42.
    Jana NR, Gearheart L, Murphy CJ (2001) Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv Mater 13:1389–1393CrossRefGoogle Scholar
  43. 43.
    Yu CS, Lee C, Wang CRC (1997) Gold Nanorods: Electrochemical Synthesis and Optical Properties. J Phys Chem B 101:6661–6664CrossRefGoogle Scholar
  44. 44.
    Wang H, Zou C, Yang B, Lu H, Tian C, Yang H, Li M, Liu C, Fu D, Liu J (2009) Electrodeposition of tubular-rod structure gold nanowires using nanoporous anodic alumina oxide as template. Electrochem Commun 11:2019–2022CrossRefGoogle Scholar
  45. 45.
    Pérez-Juste J, Liz-Marzán L, Carnie S, Chan D, Mulvaney P (2004) Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Adv Funct Mater 14:571–579CrossRefGoogle Scholar
  46. 46.
    Jiang X, Pileni M (2007) Gold nanorods: Influence of various parameters as seeds, solvent, surfactant on shape control. Colloids Surf, A 295:228–232CrossRefGoogle Scholar
  47. 47.
    Gole A, Murphy CJ (2004) Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed. Chem Mater 16:3633–3640CrossRefGoogle Scholar
  48. 48.
    Jiang X, Brioude A, Pileni M (2006) Gold nanorods: Limitations on their synthesis and optical properties. Colloids Surf, A 277:201–206CrossRefGoogle Scholar
  49. 49.
    Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770CrossRefGoogle Scholar
  50. 50.
    Gai PL, Harmer MA (2002) Surface Atomic Defect Structures and Growth of Gold Nanorods. Nano Lett 2:771–774CrossRefGoogle Scholar
  51. 51.
    Hernandez J, Solla-Gullon J, Herrero E, Aldaz A, Feliu JM (2005) Characterization of the Surface Structure of Gold Nanoparticles and Nanorods Using Structure Sensitive Reactions. J Phys Chem B 109:12651–12654CrossRefGoogle Scholar
  52. 52.
    Liu Guyot-Sionnest P (2005) Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids. J Phys Chem B 109:22192–22200CrossRefGoogle Scholar
  53. 53.
    Hubert F, Testard F, Spalla O (2008) Cetyltrimethylammonium Bromide Silver Bromide Complex as the Capping Agent of Gold Nanorods. Langmuir 24:9219–9222CrossRefGoogle Scholar
  54. 54.
    Jana NR (2005) Gram-Scale Synthesis of Soluble, Near-Monodisperse Gold Nanorods and Other Anisotropic Nanoparticles. Small 1:875–882CrossRefGoogle Scholar
  55. 55.
    Niidome Y, Nakamura Y, Honda K, Akiyama Y, Nishioka K, Kawasaki H, Nakashima N (2009) Characterization of silver ions adsorbed on gold nanorods: surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Chem Commun 1754–1756Google Scholar
  56. 56.
    Gao J, Bender CM, Murphy CJ (2003) Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir 19:9065–9070CrossRefGoogle Scholar
  57. 57.
    Nie Z, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology 5:15–25CrossRefGoogle Scholar
  58. 58.
    Sharma V, Park K, Srinivasarao M (2009) Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater Sci Eng R Rep 65:1–38CrossRefGoogle Scholar
  59. 59.
    Yu C, Irudayaraj J (2007) Quantitative Evaluation of Sensitivity and Selectivity of Multiplex NanoSPR Biosensor Assays. Biophys J 93:3684–3692CrossRefGoogle Scholar
  60. 60.
    Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Hook F, Wax A, Chilkoti A (2008) Label-Free Plasmonic Detection of Biomolecular Binding by a Single Gold Nanorod. Anal Chem 80:984–989CrossRefGoogle Scholar
  61. 61.
    Orendorff CJ, Gearheart L, Jana NR, Murphy CJ (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8:165–170CrossRefGoogle Scholar
  62. 62.
    Wang C, Irudayaraj J (2008) Gold Nanorod Probes for the Detection of Multiple Pathogens. Small 4:2204–2208CrossRefGoogle Scholar
  63. 63.
    Rayavarapu RG, Petersen W, Ungureanu C, Post JN, Leeuwen TGV, Manohar S (2007) Synthesis and Bioconjugation of Gold Nanoparticles as Potential Molecular Probes for Light-Based Imaging Techniques. Int J Biomed Imaging 2007:29817CrossRefGoogle Scholar
  64. 64.
    Eghtedari M, Liopo AV, Copland JA, Oraevsky AA, Motamedi M (2009) Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells. Nano Lett 9:287–291CrossRefGoogle Scholar
  65. 65.
    Fourkal E, Velchev I, Taffo A, Ma C, Khazak V, Skobeleva N (2009) Photo-Thermal Cancer Therapy Using Gold Nanorods. World Congress on Medical Physics and Biomedical Engineering, September 7 – 12, 2009, Munich, GermanyGoogle Scholar
  66. 66.
    Huff TB, Tong L, Zhao Y, Hansen MN, Cheng J, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2:125–132CrossRefGoogle Scholar
  67. 67.
    Salem AK, Searson PC, Leong KW (2003) Multifunctional nanorods for gene delivery. Nat Mater 2:668–671CrossRefGoogle Scholar
  68. 68.
    Yu C, Varghese L, Irudayaraj J (2007) Surface Modification of Cetyltrimethylammonium Bromide-Capped Gold Nanorods to Make Molecular Probes. Langmuir 23:9114–9119CrossRefGoogle Scholar
  69. 69.
    Caswell KK, Wilson JN, Bunz UHF, Murphy CJ (2003) Preferential End-to-End Assembly of Gold Nanorods by Biotin−Streptavidin Connectors. J Am Chem Soc 125:13914–13915CrossRefGoogle Scholar
  70. 70.
    Thomas KG, Barazzouk S, Ipe BI, Joseph STS, Kamat PV (2004) Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods. J Phys Chem B 108:13066–13068CrossRefGoogle Scholar
  71. 71.
    Chang J, Wu H, Chen H, Ling Y, Tan W (2005) Oriented assembly of Au nanorods using biorecognition system. Chem Commun 1092–1094Google Scholar
  72. 72.
    Rostro-Kohanloo BC, Bickford LR, Payne CM, Day ES, Anderson LJE, Zhong M, Lee S, Mayer KM, Zal T, Adam L, Dinney CPN, Drezek RA, West JL, Hafner JH (2009) The stabilization and targeting of surfactant-synthesized gold nanorods. Nanotechnology 20:434005CrossRefGoogle Scholar
  73. 73.
    Thierry B, Ng J, Krieg T, Griesser HJ (2009) A robust procedure for the functionalization of gold nanorods and noble metal nanoparticles. Chem Commun 1724–1726Google Scholar
  74. 74.
    Liao H, Hafner JH (2005) Gold Nanorod Bioconjugates. Chem Mater 17:4636–4641CrossRefGoogle Scholar
  75. 75.
    Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S (2006) Modification of Gold Nanorods Using Phosphatidylcholine to Reduce Cytotoxicity. Langmuir 22:2–5CrossRefGoogle Scholar
  76. 76.
    Orendorff CJ, Alam TM, Sasaki DY, Bunker BC, Voigt JA (2009) Phospholipid−Gold Nanorod Composites. ACS Nano 3:971–983CrossRefGoogle Scholar
  77. 77.
    Dai Q, Coutts J, Zou J, Huo Q (2008) Surface modification of gold nanorods through a place exchange reaction inside an ionic exchange resin. Chem Commun 2858–2860Google Scholar
  78. 78.
    Huang H, Liu X, Zeng Y, Yu X, Liao B, Yi P, Chu PK (2009) Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods. Biomaterials 30:5622–5630CrossRefGoogle Scholar
  79. 79.
    Gole A, Murphy CJ (2008) Azide-Derivatized Gold Nanorods: Functional Materials for “Click” Chemistry. Langmuir 24:266–272CrossRefGoogle Scholar
  80. 80.
    Jain PK, Eustis S, El-Sayed MA (2006) Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model. J Phys Chem B 110:18243–18253CrossRefGoogle Scholar
  81. 81.
    Gluodenis M, Foss CA (2002) The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod−Rod and Rod−Sphere Pairs. J Phys Chem B 106:9484–9489CrossRefGoogle Scholar
  82. 82.
    Xu Z, Shen C, Xiao C, Yang T, Chen S, Li H, Gao H (2006) Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior. Chem Phys Lett 432:222–225CrossRefGoogle Scholar
  83. 83.
    Orendorff CJ, Hankins PL, Murphy CJ (2005) pH-Triggered Assembly of Gold Nanorods. Langmuir 21:2022–2026CrossRefGoogle Scholar
  84. 84.
    Varghese N, Vivekchand S, Govindaraj A, Rao C (2008) A calorimetric investigation of the assembly of gold nanorods to form necklaces. Chem Phys Lett 450:340–344CrossRefGoogle Scholar
  85. 85.
    Sudeep PK, Joseph STS, Thomas KG (2005) Selective Detection of Cysteine and Glutathione Using Gold Nanorods. J Am Chem Soc 127:6516–6517CrossRefGoogle Scholar
  86. 86.
    Nie FD, Rubinstein M, Kumacheva E (2008) “Supramolecular” Assembly of Gold Nanorods End-Terminated with Polymer “Pom-Poms”: Effect of Pom-Pom Structure on the Association Modes. J Am Chem Soc 130:3683–3689CrossRefGoogle Scholar
  87. 87.
    Nakashima H, Furukawa K, Kashimura Y, Torimitsu K (2008) Self-Assembly of Gold Nanorods Induced by Intermolecular Interactions of Surface-Anchored Lipids. Langmuir 24:5654–5658CrossRefGoogle Scholar
  88. 88.
    Gole A, Murphy CJ (2005) Biotin−Streptavidin-Induced Aggregation of Gold Nanorods: Tuning Rod−Rod Orientation. Langmuir 21:10756–10762CrossRefGoogle Scholar
  89. 89.
    Pan B, Ao L, Gao F, Tian H, He R, Cui D (2005) End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology 16:1776–1780CrossRefGoogle Scholar
  90. 90.
    Dujardin E, Mann S, Hsin L, Wang CRC (2001) DNA-driven self-assembly of gold nanorods. Chem Commun 1264–1265Google Scholar
  91. 91.
    Huang H, Koria P, Parker SM, Selby L, Megeed Z, Rege K (2008) Optically Responsive Gold Nanorod−Polypeptide Assemblies. Langmuir 24:14139–14144CrossRefGoogle Scholar
  92. 92.
    Walker DA, Gupta VK (2008) Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide. Nanotechnology 19:435603CrossRefGoogle Scholar
  93. 93.
    Reynolds RA, Mirkin CA, Letsinger RL (2000) Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides. J Am Chem Soc 122:3795–3796CrossRefGoogle Scholar
  94. 94.
    Aslan K, Holley P, Davies L, Lakowicz JR, Geddes CD (2005) Angular-Ratiometric Plasmon-Resonance Based Light Scattering for Bioaffinity Sensing. J Am Chem Soc 127:12115–12121CrossRefGoogle Scholar
  95. 95.
    Aslan K, Lakowicz JR, Geddes CD (2005) Nanogold Plasmon Resonance-Based Glucose Sensing. 2. Wavelength-Ratiometric Resonance Light Scattering. Anal Chem 77:2007–2014CrossRefGoogle Scholar
  96. 96.
    Dai Q, Liu X, Coutts J, Austin L, Huo Q (2008) A One-Step Highly Sensitive Method for DNA Detection Using Dynamic Light Scattering. J Am Chem Soc 130:8138–8139CrossRefGoogle Scholar
  97. 97.
    Liu ZD, Li YF, Ling J, Huang CZ (2009) A Localized Surface Plasmon Resonance Light-Scattering Assay of Mercury (II) on the Basis of Hg2+−DNA Complex Induced Aggregation of Gold Nanoparticles. Environ Sci Technol 43:5022–5027CrossRefGoogle Scholar
  98. 98.
    Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo Q (2008) A One-Step Homogeneous Immunoassay for Cancer Biomarker Detection Using Gold Nanoparticle Probes Coupled with Dynamic Light Scattering. J Am Chem Soc 130:2780–2782CrossRefGoogle Scholar
  99. 99.
    He W, Huang CZ, Li YF, Xie JP, Yang RG, Zhou PF, Wang J (2008) One-Step Label-Free Optical Genosensing System for Sequence-Specific DNA Related to the Human Immunodeficiency Virus Based on the Measurements of Light Scattering Signals of Gold Nanorods. Anal Chem 80:8424–8430CrossRefGoogle Scholar
  100. 100.
    Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner JH (2008) A Label-Free Immunoassay Based Upon Localized Surface Plasmon Resonance of Gold Nanorods. ACS Nano 2:687–692CrossRefGoogle Scholar
  101. 101.
    York J, Spetzler D, Xiong F, Frasch WD (2008) Single-molecule detection of DNA via sequence-specific links between F1-ATPase motors and gold nanorod sensors. Lab Chip 8:415–419CrossRefGoogle Scholar
  102. 102.
    Eum N, Yeom S, Kwon D, Kim H, Kang S (2010) Enhancement of sensitivity using gold nanorods—Antibody conjugator for detection of E. coli O157:H7. Sens Actuators, B 143:784–788CrossRefGoogle Scholar
  103. 103.
    Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-Dependent Plasmon Resonant Coupling between a Gold Nanoparticle and Gold Film. Nano Lett 8:2245–2252CrossRefGoogle Scholar
  104. 104.
    Eghtedari M, Oraevsky A, Copland JA, Kotov NA, Conjusteau A, Motamedi M (2007) High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System. Nano Lett 7:1914–1918CrossRefGoogle Scholar
  105. 105.
    Song KH, Kim C, Maslov K, Wang LV (2009) Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. Eur J Radiol 70:227–231CrossRefGoogle Scholar
  106. 106.
    Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng J (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102:15752–15756CrossRefGoogle Scholar
  107. 107.
    Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods. Nano Lett 7:941–945CrossRefGoogle Scholar
  108. 108.
    Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496CrossRefGoogle Scholar
  109. 109.
    Chaney SB, Shanmukh S, Dluhy RA, Zhao Y (2005) Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Appl Phys Lett 87:031908CrossRefGoogle Scholar
  110. 110.
    Leverette CL, Villa-Aleman E, Jokela S, Zhang Z, Liu Y, Zhao Y, Smith SA (2009) Trace detection and differentiation of uranyl(VI) ion cast films utilizing aligned Ag nanorod SERS substrates. Vib Spectrosc 50:143–151CrossRefGoogle Scholar
  111. 111.
    Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA (2006) Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate. Nano Lett 6:2630–2636CrossRefGoogle Scholar
  112. 112.
    Chu H, Huang Y, Zhao Y (2008) Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection. Appl Spectrosc 62:922–931CrossRefGoogle Scholar
  113. 113.
    Wang Y, Lee K, Irudayaraj J (2010) SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem Commun 46:613–615CrossRefGoogle Scholar
  114. 114.
    Lee SJ, Morrill AR, Moskovits M (2006) Hot Spots in Silver Nanowire Bundles for Surface-Enhanced Raman Spectroscopy. J Am Chem Soc 128:2200–2201CrossRefGoogle Scholar
  115. 115.
    Yun S, Park Y, Kim SK, Park S (2007) Linker-Molecule-Free Gold Nanorod Layer-by-Layer Films for Surface-Enhanced Raman Scattering. Anal Chem 79:8584–8589CrossRefGoogle Scholar
  116. 116.
    Fabris L, Dante M, Braun G, Lee SJ, Reich NO, Moskovits M, Nguyen T, Bazan GC (2007) A Heterogeneous PNA-Based SERS Method for DNA Detection. J Am Chem Soc 129:6086–6087CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Applied Molecular Receptors Group (AMRg), IQAC-CSICNetworking Research Center on Bioengineering, Biomaterials and NanomedicineBarcelonaSpain

Personalised recommendations