Analytical and Bioanalytical Chemistry

, Volume 398, Issue 1, pp 509–517 | Cite as

Spatially resolved determination of the structure and composition of diatom cell walls by Raman and FTIR imaging

  • Martin Kammer
  • René Hedrich
  • Hermann Ehrlich
  • Jürgen Popp
  • Eike Brunner
  • Christoph Krafft
Original Paper


Vibrational spectroscopic imaging has developed into a versatile tool to study the local composition of various materials. Here, we present for the first time that Raman mapping and Fourier transform infrared imaging are useful tools to study diatom cell walls as is demonstrated for the species Stephanopyxis turris. The unicellular diatoms exhibit intricately micro- and nano-patterned cell walls, which consist of amorphous silica as well as various organic and inorganic constituents, thus making up an extremely interesting inorganic/organic hybrid material. The structure and composition of this material as well as the biochemical and biophysical processes leading to its formation remain to be challenges for ongoing research. Whereas the lateral resolution of Fourier transform infrared imaging is limited to 5 μm by diffraction, Raman maps are shown to be capable of detecting the spatial distribution of the silica as well as an additional inorganic component and the organic material down to 330-nm resolution. Due to the spherical shape of the sample with a radius of 40 μm and the requirement to accurately focus the laser before each Raman measurement within the micrometer range, Raman maps of whole diatom cell walls were registered after an adjustment of the axial position. The results reveal local differences in the cell wall composition of the honeycomb-like structures and the bottom layer.


Biomineralization Diatoms Organic cell wall material Raman mapping FTIR imaging 



The authors wish to thank Dr. Christian Matthäus for excellent assistance in Raman mapping studies using 488 nm excitation wavelength. Financial support from the DFG (grant no. Br 1278/12-3) is gratefully acknowledged.


  1. 1.
    Round F, Crawford R, Mann D (1990) The diatoms. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132CrossRefGoogle Scholar
  3. 3.
    Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586CrossRefGoogle Scholar
  4. 4.
    Sumper M, Hett R, Lehmann G, Wenzl S (2007) A code for lysine modifications of a silica biomineralizing silaffin protein. Angew Chem Int Ed 46:8405–8408CrossRefGoogle Scholar
  5. 5.
    Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci USA 97:14133–14138CrossRefGoogle Scholar
  6. 6.
    Sumper M, Brunner E, Lehmann G (2005) Biomineralization in diatoms: characterization of novel polyamines associated with silica. FEBS Lett 579:3765–3769CrossRefGoogle Scholar
  7. 7.
    Wenzl S, Hett R, Richthammer P, Sumper M (2008) Silacidins: highly acidic phosphopeptides from diatom cell walls assist in silica precipitation in vitro. Angew Chem Int Ed 120:1729–1732CrossRefGoogle Scholar
  8. 8.
    Sumper M, Lorenz S, Brunner E (2003) Biomimetic control of size in the polyamine-directed formation of silica nanospheres. Angew Chem Int Ed 42:5192–5195CrossRefGoogle Scholar
  9. 9.
    Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, van Pée KH (2009) Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem Int Ed 48:9724–9727Google Scholar
  10. 10.
    Brunner E, Lutz K (2007) Solid-state NMR in biomimetic silica formation and silica biomineralization. In: Behrens P, Bauerlein E (eds) Handbook of biomineralization. Wiley-VCH, WeinheimGoogle Scholar
  11. 11.
    Tesson B, Masse S, Laurent G, Maquet J, Livage J, Martin-Jézéquel V, Coradin T (2008) Contribution of multi-nuclear solid state NMR to the characterization of the Thalassiosira pseudonana diatom cell wall. Anal Bionanal Chem 390:1889–1898CrossRefGoogle Scholar
  12. 12.
    Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukariotic Cell 8:1038–1050CrossRefGoogle Scholar
  13. 13.
    Hildebrand M, Kim S, Shi D, Scott K, Subramaniam S (2009) 3D imaging of diatoms with ion-abrasion scanning electron microscopy. J Struct Biol 166:316–328CrossRefGoogle Scholar
  14. 14.
    Hildebrand M, Holton G, Joy DC, Doktycz MJ, Allison DP (2009) Diverse and conserved nano- and mesoscale structures of diatom silica revealed by atomic force microscopy. J Microsc 235:172–187CrossRefGoogle Scholar
  15. 15.
    Sapriel G, Quinet M, Heijde M, Jourdren L, Tanty V, Luo G, Le Crom S, Lopez PJ (2009) Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS ONE 4:e7458CrossRefGoogle Scholar
  16. 16.
    Vartanian M, Desclés J, Quinet M, Douady S, Lopez PJ (2009) Plasticity and robustness of pattern formation in the model diatom Phaeodactylum tricornutum. New Phytol 182:429–442CrossRefGoogle Scholar
  17. 17.
    Wu Q, Nelson WH, Treubig JM, Brown PR, Hargraves P, Kirs M, Feld M, Dasari R, Manoharan R, Hanlon EB (2000) UV resonance Raman detection and quantitation of domoic acid in phytoplankton. Anal Chem 72:1666–1671CrossRefGoogle Scholar
  18. 18.
    Wu Q, Nelson WH, Hargraves P, Zhang J, Brown CW, Seelenbinder JA (1998) Differentiation of algae clones on the basis of resonance Raman spectra excited by visible light. Anal Chem 70:1782–1787CrossRefGoogle Scholar
  19. 19.
    Marchetti A, Varela DE, Lance VP, Johnson Z, Palmucci M, Giordano M, Armbrust EV (2010) Iron and silicic acid effects on phytoplankton productivity, diversity, and chemical composition in the central equatorial Pacific Ocean. Limnol Oceanogr 55:11–29Google Scholar
  20. 20.
    Heredia A, van der Strate HJ, Delgadillo I, Basiuk VA, Vrieling EG (2008) Analysis of organo-silica interactions during valve formation in synchronously growing cells of the diatom Navicula pelliculosa. Chembiochem 9:573–584CrossRefGoogle Scholar
  21. 21.
    Stehfest K, Toepel J, Wilhem C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717–726CrossRefGoogle Scholar
  22. 22.
    Vardy S, Uwins P (2002) Fourier transform infrared microspectroscopy as a tool to differentiate Nitzschia closterium and Nitzschia longissima. Appl Spectrosc 56:1545–1548CrossRefGoogle Scholar
  23. 23.
    Krafft C (2009) Vibrational spectroscopic imaging of soft tissue. In: Salzer R, Siesler HW (eds) Infrared and Raman spectroscopic imaging. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Krafft C, Sergo V (2006) Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. Spectroscopy 20:195–218Google Scholar
  25. 25.
    Krafft C, Steiner G, Beleites C, Salzer R (2008) Disease recognition by infrared and Raman spectroscopy. J. Biophotonics 2:13–28CrossRefGoogle Scholar
  26. 26.
    Gröger C, Lutz K, Brunner E (2009) NMR studies of biomineralization. Prog Nucl Magn Reson Spectrosc 54:54–68CrossRefGoogle Scholar
  27. 27.
    Harrison P, Waters R, Taylor F (1980) A broad spectrum artificial sea water medium for costal and open ocean phytoplankton. JACS 16:28–35Google Scholar
  28. 28.
    Kröger N, Bergsdorf C, Sumper M (1996) Frustulins: domain conservation in a protein family associated with diatom cell walls. Eur J Biochem 239:259–264CrossRefGoogle Scholar
  29. 29.
    Sumper M (2002) A phase separation model for the nanopatterning of diatom biosilica. Science 295:2430–2433CrossRefGoogle Scholar
  30. 30.
    Sumper M, Brunner E (2006) Learning from diatoms: nature’s tools for the production of nanostructured silica. Adv Funct Mater 16:17–26CrossRefGoogle Scholar
  31. 31.
    Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127CrossRefGoogle Scholar
  32. 32.
    Cox EJ (1999) Variation in patterns of valve morphogenesis between representatives of six biraphid diatom genera (bacillariophycae). J Phycol 35:1297–1312CrossRefGoogle Scholar
  33. 33.
    Crawford SA, Higgins MJ, Mulvaney P, Wetherbee R (2001) Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J Phycol 37:543–554CrossRefGoogle Scholar
  34. 34.
    McMillan P (1984) Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy. Am Mineral 69:622–644Google Scholar
  35. 35.
    R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  36. 36.
    Gierlinger N, Luss S, Konig C, Konnerth J, Eder M, Fratzl P (2010) Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J Exp Bot 61:587–595CrossRefGoogle Scholar
  37. 37.
    Burgueño R, Quagliata MJ, Mohanty AK, Mehta G, Drzal LT, Misra M (2005) Hierarchical cellular designs for load-bearing biocomposite beams and plates. Mater Sci Eng A 390:178–187CrossRefGoogle Scholar
  38. 38.
    Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843CrossRefGoogle Scholar
  39. 39.
    Quintana Alonso I, Fleck NA (2009) The damage tolerance of a sandwich panel containing a cracked honeycomb core. J Appl Mech 76:061003-1–061003-8Google Scholar
  40. 40.
    Gibson LJ, Ashby MF, Schajer GS, Robertson CI (1982) The mechanics of two dimensional cellular solids. Proc R Soc Lond A 382:25–42CrossRefGoogle Scholar
  41. 41.
    Gibson LJ, Ashby M (1988) Cellular solids. Pergamon, OxfordGoogle Scholar
  42. 42.
    D’Arcy T, Bonner JT (eds) (1961) On growth and form. Cambridge University Press, Cambridge, Abridged editionGoogle Scholar
  43. 43.
    Vrieling EG, Sun Q, Tian M, Kooyman PJ, Gieskes WWC, van Santen RA, Sommerdijk NJM (2007) Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proc Natl Acad Sci USA 104:10441–10446CrossRefGoogle Scholar
  44. 44.
    Fuhrmann T, Landwehr S, El Rharbi-Kucki M, Sumper M (2004) Diatoms as living photonic crystals. Appl Phys B 78:257–260CrossRefGoogle Scholar
  45. 45.
    Saitoa Y, Kosuge T (2007) Honeycomb-textured structures on crystalline silicon surfaces for solar cells by spontaneous dry etching with chlorine trifluoride gas. Sol Energy Mater Sol Cells 91:1800–1804CrossRefGoogle Scholar
  46. 46.
    Yamanaka S, Yano R, Usami H, Hayashida N, Ohguchi M, Takeda H, Yoshino K (2008) Optical properties of diatom silica frustule with special reference to blue light. J Appl Phys 103:074701CrossRefGoogle Scholar
  47. 47.
    Krafft C, Codrich D, Pelizzo G, Sergo V (2008) Raman and FTIR microscopic imaging of colon tissue: a comparative study. J Biophotonics 1:154–169CrossRefGoogle Scholar
  48. 48.
    Kneipp J, Miller LM, Spassov S, Sokolowski F, Lasch P, Beekes M, Naumann D (2004) Scrapie-infected cells, isolated prions, and recombinant prion protein: a comparative study. Biopolymers 74:163–167CrossRefGoogle Scholar
  49. 49.
    Frosch T, Tarcea N, Schmitt M, Thiele H, Langenhorst F, Popp J (2007) UV Raman imaging—a promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites. Anal Chem 79:1101–1108CrossRefGoogle Scholar
  50. 50.
    Deckert-Gaudig T, Bailo E, Deckert V (2007) Perspectives for spatially resolved molecular spectroscopy—Raman on the nanometer scale. J Biophotonics 1:377–389CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martin Kammer
    • 1
  • René Hedrich
    • 1
  • Hermann Ehrlich
    • 1
  • Jürgen Popp
    • 2
    • 3
  • Eike Brunner
    • 1
  • Christoph Krafft
    • 1
    • 2
  1. 1.Bioanalytical ChemistryDresden University of TechnologyDresdenGermany
  2. 2.Institute of Photonic TechnologyJenaGermany
  3. 3.Institute of Physical ChemistryFriedrich Schiller University JenaJenaGermany

Personalised recommendations