Analytical and Bioanalytical Chemistry

, Volume 398, Issue 1, pp 489–498 | Cite as

Ultra-fast two-dimensional microchip electrophoresis using SDS μ-CGE and microemulsion electrokinetic chromatography for protein separations

Original Paper

Abstract

A poly(methyl methacrylate) microfluidic chip was used to perform a two-dimensional (2-D) separation of a complex protein mixture in short development times. The separation was performed by combining sodium dodecyl sulfate micro-capillary gel electrophoresis (SDS μ-CGE) with microemulsion electrokinetic chromatography (μ-MEEKC), which were used for the first and second dimensions, respectively. Fluorescently labeled Escherichia coli cytosolic proteins were profiled by this 2-D approach with the results compared to a similar 2-D separation using SDS μ-CGE × μ-MEKC (micelle electrokinetic chromatography). The relatively short column lengths (effective length = 10 mm) for both dimensions were used to achieve separations requiring only 220 s of development time. High spot production rates (131 ± 11 spots min−1) and reasonable peak capacities (481 ± 18) were generated despite the fact that short columns were used. In addition, the use of μ-MEEKC in the second dimension was found to produce higher peak capacities compared to μ-MEKC (481 ± 18 for μ-MEEKC and 332 ± 17 for μ-MEKC) due to the higher plate numbers associated with μ-MEEKC.

Keywords

Two-dimensional electrophoresis Protein profiling E. coli proteins SDS micro-CGE micro-MEEKC PMMA microchip 

Notes

Acknowledgment

The authors would like to express their gratitude for financial support of this work by the Louisiana Board of Regents and the National Science Foundation (EPS-0346411). The authors would also like to thank the World Class University (WCU) program for partial financial support of this work.

References

  1. 1.
    Lescuyer P, Strub JM, Luche S, Diemer H, Martinez P, Van Dorsselaer A, Lunardi J, Rabilloud T (2003) Proteomics 3:157CrossRefGoogle Scholar
  2. 2.
    Herr AE, Molho JI, Drouvalakis KA, Mikkelsen JC, Utz PJ, Santiago JG, Kenny TW (2003) Anal Chem 75:1180CrossRefGoogle Scholar
  3. 3.
    Li Y, Buch JS, Rosenberger F, DeVoe DL, Lee CS (2004) Anal Chem 76:742CrossRefGoogle Scholar
  4. 4.
    Chen XX, Wu HK, Mao CD, Whitesides GM (2002) Anal Chem 74:1772CrossRefGoogle Scholar
  5. 5.
    Emrich CA, Medintz IL, Chu WK, Mathies RA (2007) Anal Chem 79:7360CrossRefGoogle Scholar
  6. 6.
    Yang S, Liu JK, Lee CS, Devoe DL (2009) Lab Chip 9:592CrossRefGoogle Scholar
  7. 7.
    Osiri JK, Shadpour H, Park S, Snowden B, Chen Z-Y, Soper SA (2008) Electrophoresis 29:4984CrossRefGoogle Scholar
  8. 8.
    Monnig CA, Jorgenson JW (1991) Anal Chem 63:802CrossRefGoogle Scholar
  9. 9.
    Moore AW, Jorgenson JW (1993) Anal Chem 65:3550CrossRefGoogle Scholar
  10. 10.
    Gottschlich N, Jacobson SC, Culbertson CT, Ramsey JM (2001) Anal Chem 73:2669CrossRefGoogle Scholar
  11. 11.
    Ramsey JD, Jacobson SC, Culbertson CT, Ramsey JM (2003) Anal Chem 75:3758CrossRefGoogle Scholar
  12. 12.
    Rocklin RD, Ramsey RS, Ramsey JM (2000) Anal Chem 72:5244CrossRefGoogle Scholar
  13. 13.
    Zhang T, Fang Q, Du WB, Fu JL (2009) Anal Chem 81:3693CrossRefGoogle Scholar
  14. 14.
    Shadpour H, Soper SA (2006) Anal Chem 78:3519CrossRefGoogle Scholar
  15. 15.
    Watarai H (1991) Chemistry Letters 391Google Scholar
  16. 16.
    Hansen SH (2003) Electrophoresis 24:3900CrossRefGoogle Scholar
  17. 17.
    Timerbaev AR, Vasylenko OO, Foteeva LS, Rudnev AV, Semenova O, Keppler BK (2007) J Sep Sci 30:399CrossRefGoogle Scholar
  18. 18.
    Xie JP, Chen XF, Zhang JY, Liu JQ, Tian JN, Chen XG, Hu ZD (2004) J Pharm Biomed Anal 36:1CrossRefGoogle Scholar
  19. 19.
    Zhou GH, Luo GA, Zhang XD (1999) J Chromatogr A 853:277CrossRefGoogle Scholar
  20. 20.
    Vomastova L, Miksik I, Deyl Z (1996) J Chromatogr B Biomed Appl 681:107CrossRefGoogle Scholar
  21. 21.
    Boso RL, Bellini MS, Miksik I, Deyl Z (1995) J Chromatogr A 709:11CrossRefGoogle Scholar
  22. 22.
    Li G, Hu Z (1998) Analyst (Cambridge, United Kingdom) 123:1501Google Scholar
  23. 23.
    Pedersen-Bjergaard S, Gabel-Jensen C, Honore Hansen S (2000) J Chromatogr A 897:375CrossRefGoogle Scholar
  24. 24.
    Mrestani Y, El-Mokdad N, Ruettinger HH, Neubert R (1998) Electrophoresis 19:2895CrossRefGoogle Scholar
  25. 25.
    Debusschere L, Demesmay C, Rocca JL, Lachatre G, Lofti H (1997) J Chromatogr A 779:227CrossRefGoogle Scholar
  26. 26.
    Hilder EF, Klampfl CW, Buchberger W, Haddad PR (2001) J Chromatogr A 922:293CrossRefGoogle Scholar
  27. 27.
    Siren H, Karttunen A (2003) J Chromatogr B Anal Technol Biomed Life Sci 783:113CrossRefGoogle Scholar
  28. 28.
    Poouthree K, Soonthorntantikul W, Leepipatpiboon N, Petsom A, Nhujak T (2007) Electrophoresis 28:3705CrossRefGoogle Scholar
  29. 29.
    Huie CW (2006) Electrophoresis 27:60CrossRefGoogle Scholar
  30. 30.
    Hupert M, Guy J, Llopis S, Shadpour H, Rani S, Nikitopoulos D, Soper S (2006) Microfluidics and Nanofluidics ASAP.Google Scholar
  31. 31.
    Shadpour H, Musyimi H, Chen J, Soper SA (2006) J Chromatogr A 1111:238CrossRefGoogle Scholar
  32. 32.
    Terabe S, Matsubara N, Ishihama Y, Okada Y (1992) J Chromatogr 608:23CrossRefGoogle Scholar
  33. 33.
    Ishihama Y, Oda Y, Uchikawa K, Asakawa N (1995) Anal Chem 67:1588CrossRefGoogle Scholar
  34. 34.
    O’Farrell PH (1975) Biol Chem 4007Google Scholar
  35. 35.
    Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008) Bmc Genomics 9Google Scholar
  36. 36.
    Miseta A, Csutora P (2000) Mol Biol Evol 17:1232Google Scholar
  37. 37.
    Martelli PL, Fariselli P, Casadio R (2004) Proteomics 4:1665CrossRefGoogle Scholar
  38. 38.
    Liang P, Labedan B, Riley M (2002) Physiol Genomics 9:15Google Scholar
  39. 39.
    Wan HB, Liu J, Ang KC, Li SFY (1998) Talanta 45:663CrossRefGoogle Scholar
  40. 40.
    Lewus RK, Carta G (2001) Ind & Eng Chem Res 40:1548CrossRefGoogle Scholar
  41. 41.
    Raymond S, Weintraub L (1959) Science (Washington, DC, United States) 130:711CrossRefGoogle Scholar
  42. 42.
    Shapiro AL, Vinuela E, Maizel JV Jr (1967) Biochem Biophys Res Commun 28:815CrossRefGoogle Scholar
  43. 43.
    Laemmli UK (1970) Nature (London, United Kingdom) 227:680CrossRefGoogle Scholar
  44. 44.
    Herr AE, Singh AK (2004) Anal Chem 76:4727CrossRefGoogle Scholar
  45. 45.
    Altria KD (1999) J Chromatogr A 844:371CrossRefGoogle Scholar
  46. 46.
    Altria KD, Clark BJ, Mahuzier PE (2000) Chromatographia 52:758CrossRefGoogle Scholar
  47. 47.
    Fu X, Lu J, Zhu A (1996) J Chromatogr A 735:353CrossRefGoogle Scholar
  48. 48.
    Miola MF, Snowden MJ, Altria KD (1998) J Pharm Biomed Anal 18:785CrossRefGoogle Scholar
  49. 49.
    Varela AS, Macho MIS, Gonzalez AG (1995) Colloid Polym Sci 273:876CrossRefGoogle Scholar
  50. 50.
    Arnold RJ, Reilly JP (1999) Anal Biochem 269:105CrossRefGoogle Scholar
  51. 51.
    Ryan R, Donegan S, Power J, McEvoy E, Altria K (2009) Electrophoresis 30:65CrossRefGoogle Scholar
  52. 52.
    Llopis SL, Osiri J, Soper SA (2007) Electrophoresis 28:984CrossRefGoogle Scholar
  53. 53.
    Liu JK, Yang S, Lee CS, Devoe DL (2008) Electrophoresis 29:2241CrossRefGoogle Scholar
  54. 54.
    Terabe S, Matsubara N, Ishihama Y, Okada Y (1992) Elsevier p 23Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • John K. Osiri
    • 1
    • 2
    • 5
  • Hamed Shadpour
    • 1
    • 2
    • 6
  • Steven A. Soper
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA
  2. 2.Center for BioModular Multi-Scale SystemsLouisiana State UniversityBaton RougeUSA
  3. 3.Department of Mechanical EngineeringLouisiana State UniversityBaton RougeUSA
  4. 4.Nano-Biotechnology and Chemical EngineeringUlsan National Institute of Science and TechnologyUlsanSouth Korea
  5. 5.Department of Chemical EngineeringWashington State UniversityPullmanUSA
  6. 6.Department of ChemistryUniversity of North CarolinaChapel HillUSA

Personalised recommendations