Analytical and Bioanalytical Chemistry

, Volume 397, Issue 7, pp 2929–2937 | Cite as

The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy

  • Valerian Ciobotă
  • Eva-Maria Burkhardt
  • Wilm Schumacher
  • Petra Rösch
  • Kirsten Küsel
  • Jürgen PoppEmail author
Original Paper


Previous studies dealing with bacterial identification by means of Raman spectroscopy have demonstrated that micro-Raman is a suitable technique for single-cell microbial identification. Raman spectra yield fingerprint-like information about all chemical components within one cell, and combined with multivariate methods, differentiation down to species or even strain level is possible. Many microorganisms may accumulate high amounts of polyhydroxyalkanoates (PHA) as carbon and energy storage materials within the cell and the Raman bands of PHA might impede the identification and differentiation of cells. To date, the identification by means of Raman spectroscopy have never been tested on bacteria which had accumulated PHA. Therefore, the aim of this study is to investigate the effect of intracellular polymer accumulation on the bacterial identification rate. Combining fluorescence imaging and Raman spectroscopy, we identified polyhydroxybutyrate (PHB) as a storage polymer accumulating in the investigated cells. The amount of energy storage material present within the cells was dependent on the physiological status of the microorganisms and strongly influenced the identification results. Bacteria in the stationary phase formed granules of crystalline PHB, which obstructed the Raman spectroscopic identification of bacterial species. The Raman spectra of bacteria in the exponential phase were dominated by signals from the storage material. However, the bands from proteins, lipids, and nucleic acids were not completely obscured by signals from PHB. Cells growing under either oxic or anoxic conditions could also be differentiated, suggesting that changes in Raman spectra can be interpreted as an indicator of different metabolic pathways. Although the presence of PHB induced severe changes in the Raman spectra, our results suggest that Raman spectroscopy can be successfully used for identification as long as the bacteria are not in the stationary phase.


Stained bacteria with or without PHB within the cells, and the corresponding Raman spectra.


Raman spectroscopy Polyhydroxybutyrate Bacterial identification Fluorescence staining 



We highly acknowledge the financial support from the Deutsche Forschungsgemeinschaft (Graduate School 1257 “Alteration and element mobility at the microbe-mineral interface”).


  1. 1.
    Neufeld JD, Wagner M, Murrell JC (2007) ISME J 1:103CrossRefGoogle Scholar
  2. 2.
    Amann R, Ludwig W (2000) FEMS Microbiol Rev 24:555CrossRefGoogle Scholar
  3. 3.
    Amann RI, Ludwig W, Schleifer KH (1995) Microbiol Rev 59:143Google Scholar
  4. 4.
    Kirschner C, Maquelin K, Pina P, Ngo Thi NA, Choo-Smith L-P, Sockalingum GD, Sandt C, Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ, Naumann D (2001) J Clin Microbiol 39:17639CrossRefGoogle Scholar
  5. 5.
    Naumann D, Keller S, Helm D, Schultz Ch, Schrader B (1995) J Mol Struct 347:399CrossRefGoogle Scholar
  6. 6.
    Lopez-Diez EC, Goodacre R (2004) Anal Chem 76:585CrossRefGoogle Scholar
  7. 7.
    Maquelin K, Dijkshoorn L, van der Reijen TJK, Puppels GJ (2006) J Microbiol Method 64:126CrossRefGoogle Scholar
  8. 8.
    Rösch P, Harz M, Peschke K-D, Ronneberger O, Burkhardt H, Popp J (2006) Biopolymers 82:312CrossRefGoogle Scholar
  9. 9.
    Rösch P, Harz M, Peschke K-D, Ronneberger O, Burkhardt H, Schüle A, Schmauz G, Lankers M, Hofer S, Thiele H, Motzkus H-W, Popp J (2006) Anal Chem 78:2163CrossRefGoogle Scholar
  10. 10.
    Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M (2007) Environ Microbiol 9:1878CrossRefGoogle Scholar
  11. 11.
    Tarcea N, Harz M, Rösch P, Frosch T, Schmitt M, Thiele H, Hochleitner R, Popp J (2007) Spectrochim Acta A 68:1029CrossRefGoogle Scholar
  12. 12.
    Maquelin K, Choo-Smith LP, van Vreeswijk T, Endtz HP, Smith B, Bennett R, Bruining HA, Puppels GJ (2000) Anal Chem 72:12CrossRefGoogle Scholar
  13. 13.
    Krause M, Radt B, Rösch P, Popp J (2007) J Raman Spectrosc 38:369CrossRefGoogle Scholar
  14. 14.
    Harz M, Kiehntopf M, Stöckel S, Rösch P, Straube E, Deufel T, Popp J (2009) J Biophotonics 2:70CrossRefGoogle Scholar
  15. 15.
    Harz M, Rösch P, Peschke K-D, Ronneberger O, Burkhardt H, Popp J (2005) Analyst 130:1543CrossRefGoogle Scholar
  16. 16.
    Urlaub E, Popp J, Kiefer W, Bringmann G, Koppler D, Schneider H, Zimmermann U, Schrader B (1994) Biospectrosc 4:113CrossRefGoogle Scholar
  17. 17.
    Baranska M, Schulz H, Rösch P, Strehle MA, Popp J (2004) Analyst 129:926CrossRefGoogle Scholar
  18. 18.
    Krafft C (2004) Anal Bioanal Chem 378:60CrossRefGoogle Scholar
  19. 19.
    Schulz H, Baranska M, Belz H-H, Rösch P, Strehle MA, Popp J (2004) Vib Spectrosc 35:81CrossRefGoogle Scholar
  20. 20.
    Min Y-K, Yamamoto T, Kohda E, Ito T, Hamaguchi H (2005) J Raman Spectrosc 36:73CrossRefGoogle Scholar
  21. 21.
    Schulz H, Baranska M (2007) Vib Spectrosc 43:13CrossRefGoogle Scholar
  22. 22.
    Schmitt M, Popp J (2006) J Raman Spectrosc 37:20CrossRefGoogle Scholar
  23. 23.
    Edwards HGM (2004) Analyst 129:870CrossRefGoogle Scholar
  24. 24.
    Baraldi P, Tinti A (2008) J Raman Spectrosc 39:963CrossRefGoogle Scholar
  25. 25.
    Pätzold R, Keuntje M, Theophile K, Müller J, Mielcarek E, Ngezahayo A, Ahlften A-v (2008) J Microbiol Meth 72:241CrossRefGoogle Scholar
  26. 26.
    Maquelin K, Kirschner C, Choo-Smith L-P, van den Braak N, Ph Endtz H, Naumann D, Puppels GJ (2002) J Microbiol Meth 51:255–271CrossRefGoogle Scholar
  27. 27.
    Berger AJ, Zhu Q (2003) J Mod Opt 50:2375Google Scholar
  28. 28.
    Rösch P, Schmitt M, Kiefer W, Popp J (2003) J Mol Struct 661–662:363CrossRefGoogle Scholar
  29. 29.
    Rösch P, Harz M, Schmitt M, Peschke K-D, Ronneberger O, Bukhardt H, Motzkus H, Lankers M, Hofer S, Thiele H, Popp J (2005) Appl Environ Microbiol 71:1626CrossRefGoogle Scholar
  30. 30.
    Hutsebaut D, Vandroemme J, Heyrman J, Dawyndt P, Vandenabeele P, Moens L, De Vos P (2006) Sys Appl Microbiol 29:650CrossRefGoogle Scholar
  31. 31.
    Gaus K, Rösch P, Petry R, Peschke K-D, Ronneberger O, Burkhardt H, Buamann K, Popp J (2006) Biopolymers 82:286CrossRefGoogle Scholar
  32. 32.
    Harz M, Rösch P, Popp J (2009) Cytom A 75:104CrossRefGoogle Scholar
  33. 33.
    Krause M, Rösch P, Radt B, Popp J (2008) Anal Chem 80:8568CrossRefGoogle Scholar
  34. 34.
    Bashin M, Reinherz EL, Reche PA (2006) J Comput Biol 13:102CrossRefGoogle Scholar
  35. 35.
    Noble WS (2006) Nat Biotechnol 24:1565CrossRefGoogle Scholar
  36. 36.
    Senior PJ, Beech GA, Ritchie GAF, Dawes EA (1972) Biochem J 128:1193Google Scholar
  37. 37.
    Lee SY (1996) Biotechnol Bioeng 49:1CrossRefGoogle Scholar
  38. 38.
    Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450Google Scholar
  39. 39.
    Freier T, Kunze C, Nischan C, Kramer S, Sternberg K, Saß M, Hopt UT, Schmitz K-P (2002) Biomaterials 23:2649CrossRefGoogle Scholar
  40. 40.
    Jo S-J, Maeda M, Ooi T, Taguchi S (2006) J Biosci Bioeng 102:233CrossRefGoogle Scholar
  41. 41.
    Page WJ, Knosp O (1989) Appl Environ Microbiol 55:1334Google Scholar
  42. 42.
    Yamane T (1993) Biotechnol Bioeng 41:165CrossRefGoogle Scholar
  43. 43.
    Bormann EJ, Roth M (1999) Biotechnol Lett 21:1059CrossRefGoogle Scholar
  44. 44.
    Hong K, Sun S, Tian W, Chen GQ, Huang W (1999) Appl Microbiol Biotechnol 51:523CrossRefGoogle Scholar
  45. 45.
    Degelau A, Scheper T, Bailey JE, Guske C (1995) Appl Microbiol Biotechnol 42:653CrossRefGoogle Scholar
  46. 46.
    De Gelder J, Willemse-Erix D, Schotles MJ, Sanchez JI, Maquelin K, Vandenabeele P, De Boever P, Puppels GJ, Moens L, De Vos P (2008) Anal Chem 80:2155CrossRefGoogle Scholar
  47. 47.
    Bormann EJ, Leißner M, Roth M, Beer B, Metzner K (1998) Appl Microbiol Biotechnol 50:604CrossRefGoogle Scholar
  48. 48.
    Furukawa T, Sato H, Murakami R, Zhang J, Noda I, Ochiai S, Ozaki Y (2006) Polymer 47:3132CrossRefGoogle Scholar
  49. 49.
    Schmid U, Rösch P, Krause M, Harz M, Popp J, Baumann K (2009) Chemometr Intell Lab 96:159CrossRefGoogle Scholar
  50. 50.
    Küsel K, Dorsch T, Acker G, Stackebrandt E (1999) Appl Environ Microbiol 65:3633Google Scholar
  51. 51.
    Küsel K, Roth U, Drake HL (2002) Environ Microbiol 4:414CrossRefGoogle Scholar
  52. 52.
    Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) Nucl Instrum Meth B 34:396CrossRefGoogle Scholar
  53. 53.
    Pearson K (1901) Philos Mag 2:559Google Scholar
  54. 54.
    Tax DMJ, Duin RPW (2002) ICPR 2:20124Google Scholar
  55. 55.
    Burges CJC (1998) Data Min Knowl Disc 2:121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Valerian Ciobotă
    • 1
  • Eva-Maria Burkhardt
    • 2
  • Wilm Schumacher
    • 1
  • Petra Rösch
    • 1
  • Kirsten Küsel
    • 2
  • Jürgen Popp
    • 1
    • 3
    Email author
  1. 1.Institute of Physical ChemistryFriedrich Schiller University JenaJenaGermany
  2. 2.Institute of EcologyFriedrich Schiller University JenaJenaGermany
  3. 3.Institute of Photonic TechnologyJenaGermany

Personalised recommendations