Analytical and Bioanalytical Chemistry

, Volume 397, Issue 8, pp 3409–3419 | Cite as

Introduction of a 20 kHz Nd:YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging

  • Paul J. Trim
  • Marie-Claude Djidja
  • Sally J. Atkinson
  • Keith Oakes
  • Laura M. Cole
  • David M. G. Anderson
  • Philippa J. Hart
  • Simona Francese
  • Malcolm R. Clench
Original Paper

Abstract

A commercial hybrid quadrupole time–of–flight mass spectrometer has been modified for high-speed matrix-assisted laser desorption ionisation (MALDI) imaging using a short-pulse optical technology Nd:YVO4 laser. The laser operating in frequency-tripled mode (λ = 355 nm) is capable of delivering 1.5-ns pulses of energy at up to 8 μJ at 5–10 kHz and 3 μJ at 20 kHz. Experiments to improve beam homogeneity and reduce laser speckle by mechanical vibration of the fibre-optic laser delivery system are reported along with data from trial and tissue imaging experiments using the modified instrument. The laser appeared to yield best results for MALDI-MS imaging experiments when operating at repetition rates 5–10 kHz. Combining this with raster imaging allowed images of rat brain sections to be recorded in 37 min. Similarly, images of the distribution of peptides in “on-tissue” digest experiments from tumour tissues were recorded in 1 h and 30 min rather than the 8-h acquisition time previously used. A brief investigation of targeted protein analysis/imaging by multiple reaction monitoring experiments “on-tissue” is reported. A total of 26 transitions were recorded over a 3-s cycle time and images of abundant proteins were successfully recorded.

Keywords

MALDI Imaging Raster MRM Vanadate 

References

  1. 1.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760CrossRefGoogle Scholar
  2. 2.
    Holle A, Haase A, Kayser M, Höhndorf J (2006) Optimizing UV laser focus profiles for improved MALDI performance. J Mass Spectrom 41:705–716CrossRefGoogle Scholar
  3. 3.
    McLean JA, Russell WK, Russell DH (2003) A high repetition rate (1 kHz) microcrystal laser for high throughput atmospheric pressure MALDI-quadrupole-time-of-flight mass spectrometry. Anal Chem 75:648–654CrossRefGoogle Scholar
  4. 4.
    Moskovets E, Preisler J, Chen HS, Rejtar T, Andreev V, Karger BL (2006) High-throughput axial MALDI-TOF MS using a 2-kHz repetition rate laser. Anal Chem 78:921–919CrossRefGoogle Scholar
  5. 5.
    Simmons DA (2008) ABI Technical note, improved MALDI-MS imaging performance using continuous laser rasteringGoogle Scholar
  6. 6.
    Loboda AV, Krutchinsky AN, Bromirski M, Ens W, Standing KG (2000) A tandem quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun Mass Spectrom 14:1047–1057CrossRefGoogle Scholar
  7. 7.
    Qiao H, Spicer V, Ens W (2008) The effect of laser profile, fluence, and spot size on sensitivity in orthogonal-injection matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:2779–2790CrossRefGoogle Scholar
  8. 8.
    Trim PJ, Atkinson SJ, Princivalle AP, Marshall PS, West A, Clench MR (2008) MALDI-MS imaging of lipids in rat brain tissue with integrated unsupervised and supervised multivariant statistical analysis. Rapid Commun Mass Spectrom 22:1503–1509CrossRefGoogle Scholar
  9. 9.
    Takai N, Asakura T (1988) Laser speckles produced by a diffuse object under illumination from a multimode optical fiber: an experimental study. Appl Opt 27:557–562CrossRefGoogle Scholar
  10. 10.
    Jurchen JC, Rubakhin SS, Sweedler JV (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom 16:1654–1659CrossRefGoogle Scholar
  11. 11.
    Djidja M-C, Claude E, Snel M, Scriven P, Francese S, Carolan VA, Clench MR (2009) MALDI-ion mobility separation–mass spectrometry imaging of glucose-regulated protein 78 kDa (Grp78) in human formalin fixed paraffin embedded pancreatic adenocarcinoma tissue sections. J Proteome Res 8:4876–4884CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Paul J. Trim
    • 1
  • Marie-Claude Djidja
    • 1
  • Sally J. Atkinson
    • 1
  • Keith Oakes
    • 2
  • Laura M. Cole
    • 1
  • David M. G. Anderson
    • 1
  • Philippa J. Hart
    • 1
  • Simona Francese
    • 1
  • Malcolm R. Clench
    • 1
  1. 1.Biomedical Research CentreSheffield Hallam UniversitySheffieldUK
  2. 2.Elforlight Ltd., DaventryNorthantsUK

Personalised recommendations