Analytical and Bioanalytical Chemistry

, Volume 398, Issue 6, pp 2625–2634 | Cite as

An SPR biosensor for the detection of microcystins in drinking water

  • Sonia Herranz
  • Markéta Bocková
  • María Dolores Marazuela
  • Jiří Homola
  • María Cruz Moreno-Bondi
Original Paper


A surface plasmon resonance (SPR) biosensor for the detection of microcystins (MCs) in drinking water has been developed. Several assay formats have been evaluated. The selected format is based on a competitive inhibition assay, in which microcystin-LR (MCLR) has been covalently immobilized onto the surface of an SPR chip functionalized with a self-assembled monolayer. The influence of several factors affecting sensor performance, such as the nature and concentration of the antibody, the composition of the carrier buffer, and the blocking and regeneration solutions, has been evaluated. The optimized SPR biosensor provides an IC50 0.67 ± 0.09 µg L−1, a detection limit of 73 ± 8 ng L−1, and a dynamic range from 0.2 to 2.0 µg L−1 for MCLR. Cross-reactivity to other related MCs, such as microcystin-RR (88%) and microcystin-YR (94%), has also been measured. The SPR biosensor can perform four simultaneous determinations in 60 min, and each SPR chip can be reused for at least 40 assay–regeneration cycles without significant binding capacity loss. The biosensor has been successfully applied to the direct analysis of MCLR in drinking water samples, below the provisional guideline value of 1 µg L−1 established by the World Health Organization for drinking water.


Microcystin-LR Label-free biosensor Self-assembled monolayer Surface plasmon resonance 



This work has been funded by the Madrid Regional Government (ref. S-0505/AMB/0374), the ESF, the ERDF, the Spanish MEC (grant CTQ2006-15610-C02), Complutense University (GR58-08), by the Academy of Sciences of the Czech Republic (grant KAN200670701), and by the Ministry of Education, Youth and Sports (grant OC09058). Sonia Herranz thanks the Madrid Regional Government and the MEC for a doctoral and a travel grant, respectively.

Supplementary material

216_2010_3856_MOESM1_ESM.pdf (460 kb)
Fig. S1 (DOC 39 kb)


  1. 1.
    Sivonen K (2009) Cyanobacterial toxins in encyclopedia of microbiology. Elsevier, Oxford, pp 290–307Google Scholar
  2. 2.
    Messineo V, Bogialli S, Melchiorre S, Sechi N, Lugliè A, Casiddu P, Mariani MA, Padedda BM, Di Corcia A, Mazza R, Carloni E, Bruno M (2009) Limnologica 39:95–106Google Scholar
  3. 3.
    Figueiredo DR, Azeiteiro UM, Esteves SM, Goncalves FJM, Pereira MJ (2004) Ecotoxicol Environ Saf 59:151–163CrossRefGoogle Scholar
  4. 4.
    Azevedo SMFO, Carmichael WW, Jochimsen EM, Rinehart KL, Lau Sh, Shaw GR, Eagelsham GK (2002) Toxicology 181–182:441–446CrossRefGoogle Scholar
  5. 5.
    Ibelings WB, Chorus I (2007) Environ Pollut 150:177–192CrossRefGoogle Scholar
  6. 6.
    Ortelli D, Edder P, Cognard E, Jan Ph (2008) Anal Chim Acta 617:230–237CrossRefGoogle Scholar
  7. 7.
    Jurczak T, Tarczynska M, Izydorczyk K, Mankiewicz J, Zalewski M, Meriluoto J (2005) Water Res 39:2394–2406CrossRefGoogle Scholar
  8. 8.
    Campinas M, Rosa MJ (2010) Sep Purif Technol 71:114–120CrossRefGoogle Scholar
  9. 9.
    WHO (2003) Guidelines for drinking-water quality. Cyanobacterial toxins: microcystin-LR in drinking water. WHO/SDE/WSH/03.04/57Google Scholar
  10. 10.
    Wang M, Chan LL, Si M, Hong H, Wang D (2010) Toxicol Sci 113:60–69CrossRefGoogle Scholar
  11. 11.
    ISO (2005) ISO Standard 20179:2005. Water quality. Determination of microcystins. Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection. International Organization for Standardization, GenevaGoogle Scholar
  12. 12.
    Spoof L, Neffling MR, Meriluoto J (2010) Toxicon 55:954–964CrossRefGoogle Scholar
  13. 13.
    Mekebri A, Blondina GJ, Crane DB (2009) J Chromatogr A 1216:3147–3155CrossRefGoogle Scholar
  14. 14.
    Cong L, Huang B, Chen Q, Lu B, Zhang J, Ren Y (2006) Anal Chim Acta 569:157–168CrossRefGoogle Scholar
  15. 15.
    Bogialli S, Bruno M, Curini R, Di Corcia A, Fanali C, Laganà A (2006) Environ Sci Technol 40:2917–2923CrossRefGoogle Scholar
  16. 16.
    Neffling MR, Meriluoto J, Spoof L (2009) Anal Chim Acta 653:234–241CrossRefGoogle Scholar
  17. 17.
    McElhiney J, Lawton LA (2005) Toxicol Appl Pharmacol 203:219–230CrossRefGoogle Scholar
  18. 18.
    Pyo D, Lee J, Choi E (2005) Microchem J 80:165–169CrossRefGoogle Scholar
  19. 19.
    Lindner P, Molz R, Yacoub-George E, Dürkop A, Wolf H (2004) Anal Chim Acta 521:37–44CrossRefGoogle Scholar
  20. 20.
    Mountfort DO, Holland P, Sprosen J (2005) Toxicon 45:199–206CrossRefGoogle Scholar
  21. 21.
    Khreich N, Lamourette P, Renard PY, Clavé G, Fenaille F, Creminon Ch, Volland H (2009) Toxicon 53:551–559CrossRefGoogle Scholar
  22. 22.
    Long F, Shi HC, He M, Sheng JW, Wang JF (2009) Anal Chim Acta 649:123–127CrossRefGoogle Scholar
  23. 23.
    Allum LL, Mountfort DO, Gooneratne R, Pasco N, Goussain G, Hall EAH (2008) Toxicon 52:745–753CrossRefGoogle Scholar
  24. 24.
    Sangolkar LN, Maske SS, Chakrabarti T (2006) Water Res 40:3485–3496CrossRefGoogle Scholar
  25. 25.
    Lawton LA, Chambers H, Edwards Ch, Nwaopara AA, Healy M (2010) Toxicon 55:973–978CrossRefGoogle Scholar
  26. 26.
    Tippkötter N, Stückmann H, Kroll S, Winkelmann G, Noack U, Scheper T, Ulber R (2009) Anal Bioanal Chem 394:863–869CrossRefGoogle Scholar
  27. 27.
    Long F, He M, Zhu AN, Shi HC (2009) Biosens Bioelectron 24:2346–2351CrossRefGoogle Scholar
  28. 28.
    Lindner P, Molz R, Yacoub-George E, Wolf H (2009) Anal Chim Acta 636:218–223CrossRefGoogle Scholar
  29. 29.
    Hu C, Gan N, Chen Y, Bi L, Zhang X, Song L (2009) Talanta 80:407–410CrossRefGoogle Scholar
  30. 30.
    Loyprasert S, Thavarungkul P, Asawatreratanakul P, Wongkittisuksa B, Limsakul C, Kanatharana P (2008) Biosens Bioelectron 24:78–86CrossRefGoogle Scholar
  31. 31.
    Ma W, Chen W, Qiao R, Liu C, Yang C, Li Z, Xu D, Peng C, Jin Z, Xu S, Wang L (2009) Biosens Bioelectron 25:240–243CrossRefGoogle Scholar
  32. 32.
    Homola J, Lu HBB, Nenninger GG, Dostálek J, Yee SS (2001) Sens Actuators B 76:403–410CrossRefGoogle Scholar
  33. 33.
    Hegnerová K, Bocková M, Vaisocherová H, Krištofiková Z, Říčný J, Řípová D, Homola J (2009) Sens Actuators B 139:69–73CrossRefGoogle Scholar
  34. 34.
    Vaisocherová H, Zítová A, Lachmanová M, Štĕpánek J, Králíkova Š, Liboska R, Rejman D, Rosenberg I, Homola J (2006) Biopolymers 82:394–398CrossRefGoogle Scholar
  35. 35.
    Koubová V, Brynda E, Karasová L, Škvor J, Homola J, Dostálek J, Tobiška P, Rošicky J (2001) Sens Actuators B 74:100–105CrossRefGoogle Scholar
  36. 36.
    Bruun L, Koch C, Jakobsen MH, Pedersen B, Christiansen M, Aamand J (2001) Anal Chim Acta 436:87–101CrossRefGoogle Scholar
  37. 37.
    Yu HW, Lee J, Kim S, Nguyen GH, Kim IS (2009) Anal Bioanal Chem 394:2173–2181CrossRefGoogle Scholar
  38. 38.
    Zeck A, Eikenberg A, Weller MG, Niessner R (2001) Anal Chim Acta 441:1–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sonia Herranz
    • 1
  • Markéta Bocková
    • 2
  • María Dolores Marazuela
    • 1
  • Jiří Homola
    • 2
  • María Cruz Moreno-Bondi
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryUniversidad Complutense de MadridMadridSpain
  2. 2.Institute of Photonics and ElectronicsAcademy of Sciences of Czech RepublicPragueCzech Republic

Personalised recommendations