Analytical and Bioanalytical Chemistry

, Volume 397, Issue 8, pp 3213–3224 | Cite as

Use of quantum dots in the development of assays for cancer biomarkers

  • Megan K. Wagner
  • Feng Li
  • Jingjing Li
  • Xing-Fang Li
  • X. Chris Le


Biomarker assays may be useful for screening and diagnosis of cancer if a set of molecular markers can be quantified and statistically differentiated between cancerous cells and healthy cells. Markers of disease are often present at very low concentrations, so methods capable of low detection limits are required. Quantum dots (QDs) are nanoparticles that are emerging as promising probes for ultrasensitive detection of cancer biomarkers. QDs attached to antibodies, aptamers, oligonucleotides, or peptides can be used to target cancer markers. Their fluorescent properties have enabled QDs to be used as labels for in-vitro assays to quantify biomarkers, and they have been investigated as in-vivo imaging agents. QDs can be used as donors in assays involving fluorescence resonance energy transfer (FRET), or as acceptors in bioluminescence resonance energy transfer (BRET). The nanoparticles are also capable of electrochemical detection and are potentially useful for “lab-on-a-chip” applications. Recent developments in silicon QDs, non-blinking QDs, and QDs with reduced-size and controlled-valence further make these QDs bioanalytically attractive because of their low toxicity, biocompatibility, high quantum yields, and diverse surface modification flexibility. The potential of multiplexed sensing using QDs with different wavelengths of emission is promising for simultaneous detection of multiple biomarkers of disease.


Quantum dots have been conjugated to affinity probes to assay for cancer biomarkers including proteins, peptides, DNA, and whole cells


Quantum dots Nanoparticles Tumor markers Imaging Biosensors Fluorescence FRET BRET Electrochemical Multiplex Aptamers Cancer 





Benzo[a]pyrene diol epoxide


Bioluminescence resonance energy transfer


Cancer antigen


Carcinoembryonic antigen


Cytokeratin 18


Deoxyribonucleic acid


Enzyme-linked immunosorbent assay


Fluorescence resonance energy transfer


Human epidermal growth factor receptor 2


Immunoglobulin G


Matrix metalloproteinase


Mucin 1


Polymerase chain reaction


Poly(ethylene glycol)


Prostate-specific antigen


Prostate-specific membrane antigen


Quantum dot


Rolling circle amplification


Ribonucleic acid


Systematic evolution of ligands by exponential enrichment


Urokinase-type plasminogen activator


Vascular endothelial growth factor



The authors thank the Natural Sciences and Engineering Research Council of Canada, Canadian Institutes of Health Research, the Canada Research Chairs program, and Alberta Health and Wellness for their support. An Alberta Ingenuity Nanotechnology Scholarship (to MKW) and a China Scholarship Council visiting studentship (to JL) are also acknowledged.


  1. 1.
    Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225Google Scholar
  2. 2.
    Ullah MF, Aatif M (2009) The footprints of cancer development: cancer biomarkers. Cancer Treat Rev 35:193Google Scholar
  3. 3.
    Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845Google Scholar
  4. 4.
    Bast RC, Badgwell D, Lu Z et al (2005) New tumor markers: CA125 and beyond. Int J Gynecol Cancer 15:274Google Scholar
  5. 5.
    Smith R, Cokkinides V, Brauley OW (2008) Cancer screening in the United States, 2008: A review of current American Cancer Society guidelines and cancer screening issues. CA Cancer J Clin 58:161Google Scholar
  6. 6.
    Zhang H, Zhao Q, Li X et al (2007) Ultrasensitive assays for proteins. Analyst 132:724Google Scholar
  7. 7.
    Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538Google Scholar
  8. 8.
    Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435Google Scholar
  9. 9.
    Medintz IL, Mattoussi H, Clapp AR (2008) Potential clinical applications of quantum dots. Int J Nanomed 3:151Google Scholar
  10. 10.
    Frasco MF, Chaniotakis N (2010) Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem 396:229Google Scholar
  11. 11.
    Wilson WL, Szajowski PF, Brus LE (1993) Quantum confinement in size-selected. Surface-oxidized silicon nanocrystals. Science 262:1242Google Scholar
  12. 12.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933Google Scholar
  13. 13.
    Zhang CY, Yeh HC, Kuroki MT et al (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826Google Scholar
  14. 14.
    Medintz IL, Clapp AR, Mattoussi H et al (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630Google Scholar
  15. 15.
    Bagalkot V, Zhang L, Levy-Nissenbaum E et al (2007) Quantum dot - Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett 7:3065Google Scholar
  16. 16.
    Cheng AKH, Su H, Wang YA et al (2009) Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal Chem 81:6130Google Scholar
  17. 17.
    Boeneman K, Mei BC, Dennis AM et al (2009) Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc 131:3828Google Scholar
  18. 18.
    Dabbousi BO, RodriguezViejo J, Mikulec FV et al (1997) (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463Google Scholar
  19. 19.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Meth 5:763Google Scholar
  20. 20.
    Bruchez M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013Google Scholar
  21. 21.
    Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016Google Scholar
  22. 22.
    Jaiswal JK, Mattoussi H, Mauro JM et al (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47Google Scholar
  23. 23.
    Hanaki K, Momo A, Oku T et al (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302:496Google Scholar
  24. 24.
    Goldman ER, Clapp AR, Anderson GP et al (2004) Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 76:684Google Scholar
  25. 25.
    Erogbogbo F, Yong K, Roy I et al (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2:873Google Scholar
  26. 26.
    Warner JH, Hoshino A, Yamamoto K et al (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Intl Ed 44:4550Google Scholar
  27. 27.
    He Y, Su Y, Yang X et al (2009) Photo and pH stable. Highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J Am Chem Soc 131:4434Google Scholar
  28. 28.
    Zhang L, Shen X, Liang H et al (2010) Hot-injection synthesis of highly luminescent and monodisperse CdS nanocrystals using thioacetamide and cadmium source with proper reactivity. J Colloid Interface Sci 342:236Google Scholar
  29. 29.
    Talapin DV, Mekis I, Gotzinger S et al (2004) CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J Phys Chem B 108:18826Google Scholar
  30. 30.
    Kucur E, Boldt FM, Cavaliere-Jaricot S et al (2007) Quantitative analysis of cadmium selenide nanocrystal concentration by comparative techniques. Anal Chem 79:8987Google Scholar
  31. 31.
    Deng Z, Schulz O, Lin S et al (2010) Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared. J Am Chem Soc 132:5592Google Scholar
  32. 32.
    Smith AM, Mohs AM, Nie S (2009) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol 4:56Google Scholar
  33. 33.
    Zhang W, Chen G, Wang J et al (2009) Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Inorg Chem 48:9723Google Scholar
  34. 34.
    Xu S, Kumar S, Nann T (2006) Rapid synthesis of high-quality InP nanocrystals. J Am Chem Soc 128:1054Google Scholar
  35. 35.
    Xu S, Ziegler J, Nann T (2008) Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J Mat Chem 18:2653Google Scholar
  36. 36.
    Xie R, Peng X (2009) Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J Am Chem Soc 131:10645Google Scholar
  37. 37.
    Fernee MJ, Thomsen E, Jensen P et al (2006) Highly efficient luminescence from a hybrid state found in strongly quantum confined PbS nanocrystals. Nanotechnology 17:956Google Scholar
  38. 38.
    Hinds S, Myrskog S, Levina L et al (2007) NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. J Am Chem Soc 129:7218Google Scholar
  39. 39.
    Du H, Chen CL, Krishnan R et al (2002) Optical properties of colloidal PbSe nanocrystals. Nano Lett 2:1321Google Scholar
  40. 40.
    Hansen JA, Wang J, Kawde A et al (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228Google Scholar
  41. 41.
    Liu G, Wang J, Kim J et al (2004) Electrochemical coding for multiplexed immunoassays of proteins. Anal Chem 76:7126Google Scholar
  42. 42.
    Wang J, Liu G, Wu H et al (2008) Quantum-dot-based electrochemical immunoassay for high-throughput screening of the prostate-specific antigen. Small 4:82Google Scholar
  43. 43.
    Wu XY, Liu HJ, Liu JQ et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41Google Scholar
  44. 44.
    Gao XH, Cui YY, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969Google Scholar
  45. 45.
    Dubertret B, Skourides P, Norris DJ et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759Google Scholar
  46. 46.
    Gerion D, Pinaud F, Williams SC et al (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861Google Scholar
  47. 47.
    Jokerst JV, Raamanathan A, Christodoulides N et al (2009) Nano-bio-chips for high performance multiplexed protein detection: Determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens Bioelectron 24:3622Google Scholar
  48. 48.
    Hamula CLA, Guthrie JW, Zhang H et al (2006) Selection and analytical applications of aptamers. Trends Anal Chem 25:681Google Scholar
  49. 49.
    Daniels DA, Chen H, Hicke BJ et al (2003) A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A 100:15416Google Scholar
  50. 50.
    Shangguan D, Li Y, Tang Z et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838Google Scholar
  51. 51.
    Algar WR, Krull UJ (2009) Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 81:4113Google Scholar
  52. 52.
    Sapsford KE, Farrell D, Sun S et al (2009) Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot-peptide substrates. Sens Actuators B-Chem 139:13Google Scholar
  53. 53.
    Shi L, De Paoli V, Rosenzweig N et al (2006) Synthesis and application of quantum dots FRET-based protease sensors. J Am Chem Soc 128:10378Google Scholar
  54. 54.
    Hu FQ, Ran YL, Zhou ZA et al (2006) Preparation of bioconjugates of CdTe nanocrystals for cancer marker detection. Nanotechnology 17:2972Google Scholar
  55. 55.
    Chu TC, Shieh F, Lavery LA et al (2006) Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosens Bioelectron 21:1859Google Scholar
  56. 56.
    Ghazani AA, Lee JA, Klostranec J et al (2006) High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Lett 6:2881Google Scholar
  57. 57.
    Chen X, Deng Y, Lin Y et al (2008) Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells. Nanotechnology 19:235105Google Scholar
  58. 58.
    Hirata E, Arakawa Y, Shirahata M et al (2009) Endogenous tenascin-C enhances glioblastoma invasion with reactive change of surrounding brain tissue. Cancer Sci 100:1451Google Scholar
  59. 59.
    Weng KC, Noble CO, Papahadjopoulos-Sternberg B et al (2008) Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett 8:2851Google Scholar
  60. 60.
    Smith BR, Cheng Z, De A et al (2008) Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett 8:2599Google Scholar
  61. 61.
    Choi HS, Liu W, Liu F et al (2010) Design considerations for tumour-targeted nanoparticles. Nat Nano 5:42Google Scholar
  62. 62.
    Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195Google Scholar
  63. 63.
    Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nano 4:710Google Scholar
  64. 64.
    Xiao Y, Gao X, Gannot G et al (2008) Quantitation of HER2 and telomerase biomarkers in solid tumors with IgY antibodies and nanocrystal detection. Int J Cancer 122:2178Google Scholar
  65. 65.
    Sweeney E, Ward TH, Gray N et al (2008) Quantitative multiplexed quantum dot immunohistochemistry. Biochem Biophys Res Commun 374:181Google Scholar
  66. 66.
    Kerman K, Endo T, Tsukamoto M et al (2007) Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta 71:1494Google Scholar
  67. 67.
    Wang Z, Lu M, Wang X et al (2009) Quantum dots enhanced ultrasensitive detection of DNA adducts. Anal Chem 81:10285Google Scholar
  68. 68.
    Randerath K, Reddy MV, Gupta RC (1981) P32-labeling test for DNA damage. Proc Natl Acad Sci U S A 78:6126Google Scholar
  69. 69.
    Sancar A (1994) Mechanisms of Dna excision-repair. Science 266:1954Google Scholar
  70. 70.
    Doll R, Peto R (1981) The causes of cancer - quantitative estimates of avoidable risks of cancer in the United-States today. J Natl Cancer Inst 66:1191Google Scholar
  71. 71.
    Cheng W, Yan F, Ding L et al (2010) Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal Chem 82:3337Google Scholar
  72. 72.
    Zhang H, Wang Z, Li X et al (2006) Ultrasensitive detection of proteins by amplification of affinity aptamers. Angew Chem Intl Ed 45:1576Google Scholar
  73. 73.
    Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609Google Scholar
  74. 74.
    Medintz IL, Mattoussi H (2009) Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11:17Google Scholar
  75. 75.
    Clapp AR, Medintz IL, Mattoussi H (2006) Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 7:47Google Scholar
  76. 76.
    Clapp AR, Medintz IL, Mauro JM et al (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301Google Scholar
  77. 77.
    Algar WR, Krull UJ (2010) Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Anal Chem 82:400Google Scholar
  78. 78.
    Brena RM, Huang TH, Plass C (2006) Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med 84:365Google Scholar
  79. 79.
    Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163Google Scholar
  80. 80.
    Bailey VJ, Easwaran H, Zhang Y et al (2009) MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res 19:1455Google Scholar
  81. 81.
    Breast Cancer Antigen CA15-3 Enzyme Immunoassay Test Kit (2009) MP Biomedicals, Orangeburg, NY. Accessed Dec 2 2009.,07BC1015.pdf
  82. 82.
    Medintz IL, Clapp AR, Brunel FM et al (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5:581Google Scholar
  83. 83.
    Chang E, Miller JS, Sun JT et al (2005) Protease-activated quantum dot probes. Biochem Biophys Res Commun 334:1317Google Scholar
  84. 84.
    Kim Y, Oh Y, Oh E et al (2008) Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal Chem 80:4634Google Scholar
  85. 85.
    McCawley LJ, Matrisian LM (2000) Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 6:149Google Scholar
  86. 86.
    Devarajan E, Sahin AA, Chen JS et al (2002) Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21:8843Google Scholar
  87. 87.
    Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96:151Google Scholar
  88. 88.
    Xia Z, Rao J (2009) Biosensing and imaging based on bioluminescence resonance energy transfer. Curr Opin Biotechnol 20:37Google Scholar
  89. 89.
    Xia Z, Xing Y, So M et al (2008) Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Anal Chem 80:8649Google Scholar
  90. 90.
    Zajac A, Song D, Qian W et al (2007) Protein microarrays and quantum dot probes for early cancer detection. Colloid Surf B-Biointerfaces 58:309Google Scholar
  91. 91.
    Hu M, Yan J, He Y et al (2010) Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 4:488Google Scholar
  92. 92.
    Daniels R (2010) Delmar’s guide to laboratory and diagnostic tests. Delmar/Cengage Learning, Clifton ParkGoogle Scholar
  93. 93.
    Wang J, Liu GD, Polsky R et al (2002) Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem Commun 4:722Google Scholar
  94. 94.
    Numnuam A, Chumbimuni-Torres KY, Xiang Y et al (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80:707Google Scholar
  95. 95.
    Ho J-A, Lin Y, Wang L et al (2009) Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers. Anal Chem 81:1340Google Scholar
  96. 96.
    Cheng W, Ding L, Ding S et al (2009) A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew Chem Intl Ed 48:6465Google Scholar
  97. 97.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948Google Scholar
  98. 98.
    Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11Google Scholar
  99. 99.
    Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165Google Scholar
  100. 100.
    Rzigalinski BA, Strobl JS (2009) Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol 238:280Google Scholar
  101. 101.
    Shiohara A, Hanada S, Prabakar S et al (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132:248Google Scholar
  102. 102.
    Wang X, Ren X, Kahen K et al (2009) Non-blinking semiconductor nanocrystals. Nature 459:686Google Scholar
  103. 103.
    Smith AM, Nie S (2009) Next-generation quantum dots. Nat Biotech 27:732Google Scholar
  104. 104.
    Howarth M, Liu W, Puthenveetil S et al (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Meth 5:397Google Scholar
  105. 105.
    Park J, Gu L, von Maltzahn G et al (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331Google Scholar
  106. 106.
    Choi HS, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165Google Scholar
  107. 107.
    Algar WR, Krull UJ (2009) Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence. Langmuir 26:6041Google Scholar
  108. 108.
    Medintz IL, Farrell D, Susumu K et al (2009) Multiplex charge-transfer interactions between quantum dots and peptide-bridged ruthenium complexes. Anal Chem 81:4831Google Scholar
  109. 109.
    Medintz IL, Pons T, Trammell SA et al (2008) Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. J Am Chem Soc 130:16745Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Megan K. Wagner
    • 1
  • Feng Li
    • 1
  • Jingjing Li
    • 1
  • Xing-Fang Li
    • 1
  • X. Chris Le
    • 1
  1. 1.Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences BuildingUniversity of AlbertaEdmontonCanada

Personalised recommendations