Advertisement

Analytical and Bioanalytical Chemistry

, Volume 397, Issue 6, pp 2513–2524 | Cite as

Retention and selectivity properties of carbamate pesticides on novel polar-embedded stationary phases

  • Jesse O. Omamogho
  • Elaine M. Stack
  • Apichai Santalad
  • Supalax Srijaranai
  • Jeremy D. Glennon
  • Helen Yamen
  • Klaus Albert
Original Paper

Abstract

This study describes the use of stationary phases with polar functionality suitable for the chemical analysis of carbamates pesticides and comparing with conventional alkyl C8 and C18 phases. The emphasis of this study was to compare the selectivity and retention of the pesticides on different stationary phases, bonded onto 1.7 µm partially porous silica particles under isocratic separation condition. Four stationary phases including: phenylaminopropyl (PAP) phase, bidentate propylurea-C18 (BPUC18), C8 and C18, were successfully bonded on the partially porous silica spheres as evidenced by 29Si and 13C solid-state NMR analysis. The phenylaminopropyl phase exhibited smaller retentivity and enhanced selectivity compared to the alkyl C8 phase; the analysis time to run separation of the six carbamate pesticides (i.e., methomyl, propoxur, carbofuran, carbaryl, isoprocarb, and promecarb) on the PAP phase was threefold faster than alkyl C8 phase. In a similar manner, the BPUC18 phase shows similar selectivity to that of the PAP phase, but with longer retentivity; although the BPUC18 phase is characterized with a lesser degree of retentivity for the carbamate pesticides than the conventional alkyl C18 phase. We propose that π–π and weak polar interactions between the carbamate pesticides and the PAP phase dominates the separation mechanism and providing a superior selectivity; faster separation time was also achieved as a result of smaller retentivity. Whereas the C8 and C18 bonded phases exhibits only hydrophobic interactions with the pesticides, leading to larger retentivity. The BPUC18 phase is shown to interact via polar–polar interactions in addition to hydrophobic interactions with the pesticides, providing similar selectivity with the PAP phase but with larger retentivity.

The Polar embedded phase studied (PAP) bonded onto core-shell silica particles and the chromatographic separation of six carbamate pesticides using the PAP phase.

Keywords

Polar-embedded phase Seeded growth mesoporous shell Core-shell silica Carbamate pesticides 

Notes

Acknowledgements

The authors (JOO, EMS and JDG) wish to thanks Science Foundation Ireland (SFI) for funding this project under the grant code: SFI08/SFC/B1412

Supplementary material

216_2010_3816_MOESM1_ESM.pdf (523 kb)
Supplementary material (PDF 522 kb)

References

  1. 1.
    Sagratini G, Mañes J, Giardiná D, Damiani P, Picó Y (2007) J Chromatogr A 1147:135–143CrossRefGoogle Scholar
  2. 2.
    Saraji M, Esteki N (2008) Anal Bioanal Chem 391:1091–1100CrossRefGoogle Scholar
  3. 3.
    Gou Y, Pawliszyn J (2000) Anal Chem 72:2774–2779CrossRefGoogle Scholar
  4. 4.
    Sánchez-Brunete C, Rodriguez A, Tadeo JL (2003) J Chromatogr A 1007:85–91CrossRefGoogle Scholar
  5. 5.
    Sun L, Lee HK (2003) J Chromatogr A 1014:165–177CrossRefGoogle Scholar
  6. 6.
    López-Blanco MC, Cancho-Grande B, Simal-Gándara J (2002) J Chromatogr A 963:117–123CrossRefGoogle Scholar
  7. 7.
    Dorsey JG, Cooper WT (1994) Anal Chem 66:857A–867ACrossRefGoogle Scholar
  8. 8.
    Poole CF, Poole SK (2002) J Chromatogr A 965:263–299CrossRefGoogle Scholar
  9. 9.
    Keiser JE, Kirby KW, Tremmel F (1983) J Chromatogr A 259:186–188CrossRefGoogle Scholar
  10. 10.
    Rouberty F, Fournier J (1996) J Liq Chromatogr Relat Technol 19:37–55CrossRefGoogle Scholar
  11. 11.
    Silva CR, Bachmann S, Schefer RR, Albert K, Jardim ICSF, Airoldi C (2002) J Chromatogr A 948:85–95CrossRefGoogle Scholar
  12. 12.
    Silva CR, Jardim ICSF, Airoldi C (2001) J Chromatogr A 913:65CrossRefGoogle Scholar
  13. 13.
    Tran ATK, Hyne RV, Doble P (2007) Environ Toxicol Chem 26:435–443CrossRefGoogle Scholar
  14. 14.
    Kiseleva MG, Nesterenko PN (2000) J Chromatogr A 898:23–34CrossRefGoogle Scholar
  15. 15.
    Kiseleva MG, Nesterenko PN (2001) J Chromatogr A 920:87–93CrossRefGoogle Scholar
  16. 16.
    Scully NM, Healy LO, O'Mahony T, Glennon JD, Dietrich B, Albert K (2008) J Chromatogr A 1191:99–107CrossRefGoogle Scholar
  17. 17.
    O'Sullivan GP, Scully NM, Prat J-M, Glennon JD, Dietrich B, Friebolin V, Albert K (2009) Anal Bioanal Chem 394:1261–1272CrossRefGoogle Scholar
  18. 18.
    Layne J (2002) J Chromatogr A 957:149–164CrossRefGoogle Scholar
  19. 19.
    McCalley DV (1999) J Chromatogr A 844:23–38CrossRefGoogle Scholar
  20. 20.
    Neue UD, O'Gara JE, Méndez A (2006) J Chromatogr A 1127:161–174CrossRefGoogle Scholar
  21. 21.
    Wilson NS, Gilroy J, Dolan JW, Snyder LR (2004) J Chromatogr A 1026:91–100CrossRefGoogle Scholar
  22. 22.
    Airoldi C, Silva CR (1999). Production of trialkoxysilanes with reactive groups derived from urea consists of synthesis of precursor with aliphatic amines BR9903110-AGoogle Scholar
  23. 23.
    Silva CR, Airoldi C, Collins KE, Collins CH (2005) J Chromatogr A 1087:29–37CrossRefGoogle Scholar
  24. 24.
    Kirkland JJ (2004) J Chromatogr A 1060:9–21Google Scholar
  25. 25.
    Kirkland JJ, Adams JB, van Straten MA, Claessens HA (1998) Anal Chem 70:4344–4352CrossRefGoogle Scholar
  26. 26.
    Liu X, Bordunov AV, Pohl CA (2006) J Chromatogr A 1119:128–134CrossRefGoogle Scholar
  27. 27.
    Liu X, Bordunov A, Tracy M, Slingsby R, Avdalovic N, Pohl C (2006) J Chromatogr A 1119:120–127CrossRefGoogle Scholar
  28. 28.
    Omamogho JO, Glennon, J. D (Patent applied Dec. 2008)Google Scholar
  29. 29.
    Albert K (2003) J Sep Sci 26:215–224CrossRefGoogle Scholar
  30. 30.
    Albert K, Bayer E (1991) J Chromatogr A 544:345–370CrossRefGoogle Scholar
  31. 31.
    Pursch M, Sander LC, Albert K (1996) Anal Chem 68:4107–4113CrossRefGoogle Scholar
  32. 32.
    Pursch M, Strohschein S, Handel H, Albert K (1996) Anal Chem 68:386–393CrossRefGoogle Scholar
  33. 33.
    Pursch M, Sander LC, Albert K (1999) Anal Chem News Featur, pp. 733A-741AGoogle Scholar
  34. 34.
    Massiot D, Fayon F, Capron M, King I, Calvé SL, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Magn Reson Chem 40:70–76CrossRefGoogle Scholar
  35. 35.
    Croes K, Steffens A, Marchand DH, Snyder LR (2005) J Chromatogr A 1098:123–130CrossRefGoogle Scholar
  36. 36.
    Poole CF, Atapattu SN, Poole SK, Bell AK (2009) Anal Chim Acta 652:32–53CrossRefGoogle Scholar
  37. 37.
    Abraham MH, Ibrahim A, Zissimos AM (2004) J Chromatogr A 1037:29–47CrossRefGoogle Scholar
  38. 38.
    Vailaya A, Horváth C (1998) J Chromatogr A 829:1–27CrossRefGoogle Scholar
  39. 39.
    Dorsey JG, Dill KA (1989) Chem Rev 89:331–346CrossRefGoogle Scholar
  40. 40.
    Sentell KB, Dorsey JG (1989) Anal Chem 61:930–934CrossRefGoogle Scholar
  41. 41.
    Usher KM, Simmons CR, Dorsey JG (2008) J Chromatogr A 1200:122–128CrossRefGoogle Scholar
  42. 42.
    Berendsen GE, de Galan L (1978) J Liq Chromatogr Relat Technol 1:561–586CrossRefGoogle Scholar
  43. 43.
    Berendsen GE, Pikaart KA, de Galan L (1980) J Liq Chromatogr Relat Technol 3:1437–1464CrossRefGoogle Scholar
  44. 44.
    Ali Z, Poole CF (2004) J Chromatogr A 1052:199–204CrossRefGoogle Scholar
  45. 45.
    Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525–5534CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jesse O. Omamogho
    • 1
  • Elaine M. Stack
    • 1
  • Apichai Santalad
    • 1
    • 2
  • Supalax Srijaranai
    • 2
  • Jeremy D. Glennon
    • 1
  • Helen Yamen
    • 3
  • Klaus Albert
    • 3
  1. 1.Department of Chemistry, Irish Separation Science Cluster (ISSC), Analytical & Biological Chemistry Research Facility (ABCRF)University College CorkCorkIreland
  2. 2.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  3. 3.Institut für Organische ChemieUniversität TübingenTübingenGermany

Personalised recommendations