Analytical and Bioanalytical Chemistry

, Volume 397, Issue 6, pp 2491–2499

Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy

  • Ina Reiche
  • Matthieu Lebon
  • Céline Chadefaux
  • Katharina Müller
  • Anne-Solenn Le Hô
  • Michael Gensch
  • Ulrich Schade
Original Paper


Archaeological bone materials record characteristic markers of life in prehistoric times (dating, climate, environment, diet, human migration) in their isotopic and chemical composition in addition to palaeontological, archaeozoological, anthropological and palaeogenetic information. Thus, the discovery and conservation of archaeological bone materials is of great importance to get access to this information. However, archaeological materials are altered by different postmortem processes and it appears necessary to estimate if the archaeological information is still reliable or if it has been modified during burial. As archaeological bone materials present a high structural hierarchy at the micro- and nanoscale, changes induced by diagenetic phenomena have to be observed at these scales. One method for revealing post mortem changes of the bone structure and composition at the microscale is synchrotron radiation micro-FTIR imaging (SR micro-FTIR). Thus, thin sections of about 5,000-year-old archaeological bones have been analysed in transmission mode at the IRIS beamline (BESSY II, HZB Berlin) to determine markers of the state of bone preservation at the microscale. The archaeological bone material comes from station 19 of the Neolithic site of the Chalain Lake. By using SR micro-FTIR it was possible to image characteristic bone structures, e.g. osteons (the constitutive histological unit of cortical bone), using the absorption band ratios corresponding to different chemical bone constituents (collagen content and quality, phosphate crystallinity, carbonate content). These data allow us to precisely evaluate the state of preservation of a 5,000-year-old bone at the histological level.


Chemical mapping of a thin section of the archaeological bone AB_CH19nb1 from the Neolithic station 19 at Chalain Lake


Infrared spectroscopy Mapping Transmission mode Archaeological bones Diagenesis Thin section 


  1. 1.
    Bocherens H, Drucker DG et al (2006) Bears and humans in Chauvet Cave (Vallon-Pont-d’Arc, Ardèche, France): insights from stable isotopes and radiocarbon dating of bone collagen. J Hum Evol 50:370–376CrossRefGoogle Scholar
  2. 2.
    Kutschera W, Müller W (2003) “Isotope language” of the Alpine Iceman investigated with AMS and MS. Nucl Instrum Meth Phys Res B 204:705–719CrossRefGoogle Scholar
  3. 3.
    Price TD, Burton JH et al (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44(1):117–135CrossRefGoogle Scholar
  4. 4.
    Hedges REM (2002) Bone diagenesis: an overview of processes. Archaeometry 44(3):319–328CrossRefGoogle Scholar
  5. 5.
    Wilson L, Pollard M (2001) Here today, gone tomorrow? Integrated experimentation and geochemical modeling in studies of archaeological diagenetic change. Acc Chem Res 35(8):644–651CrossRefGoogle Scholar
  6. 6.
    Smith CI, Nielsen-Marsh CM et al (2007) Bone diagenesis in the European Holocene I: patterns and mechanisms. J Archaeol Sci 34:1485–1493CrossRefGoogle Scholar
  7. 7.
    Currey JD (2002) Bones. Princeton University Press, p 456Google Scholar
  8. 8.
    Reiche I, Favre-Quattropani L et al (2003) A multianalytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France). Meas Sci Technol 14:1608–1619CrossRefGoogle Scholar
  9. 9.
    Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196CrossRefGoogle Scholar
  10. 10.
    Grupe J (1995) Preservation of collagen in bone from dry, sandy soil. J Archaeol Sci 22:193–199CrossRefGoogle Scholar
  11. 11.
    Bartsiokas A, Middleton AP (1992) Characterization and dating of recent and fossil bone by x-ray diffraction. J Archaeol Sci 19:63–72CrossRefGoogle Scholar
  12. 12.
    Koon HE, O'Connor C et al (2010) Sorting the butchered from the boiled. J Archaeol Sci 37:62–67CrossRefGoogle Scholar
  13. 13.
    Boskey A, Camacho NP (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478CrossRefGoogle Scholar
  14. 14.
    Chadefaux C, Le Hô A-S et al (2009) Micro-ATR-FTIR studies combined with the curve-fitting of the amide I and II bands of type I collagen in archaeological bone materials. ePreservSci 6:129–137Google Scholar
  15. 15.
    Fratzl P, Paris O (2004) Complex biological structures: collagen and bone. In: Fitter J, Gutberlet T, Katsaras J (eds) Neutrons in biology—techniques and applications. Springer, Heidelberg, pp 15–34Google Scholar
  16. 16.
    Gupta HS, Seto J et al (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. PNAS 103(47):17741–17746CrossRefGoogle Scholar
  17. 17.
    Miller L, Dumas P (2006) Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta 1758:846–857CrossRefGoogle Scholar
  18. 18.
    Petrequin P (ed) (1997) Les sites littoraux néolithiques de Clairvaux-Les-Lacs et de Chalain (Jura) III Chalain station 3 3200–2900 av. J.-C. Paris, Maison des Sciences de l'HommeGoogle Scholar
  19. 19.
    Paschalis EP, Verdelis K et al (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16(10):1821–1828CrossRefGoogle Scholar
  20. 20.
    Ruppel ME, Burr DB et al (2006) Chemical makeup of microdamaged bone differs from undamaged bone. Bone 39:318–324CrossRefGoogle Scholar
  21. 21.
    Rey C, Renugopalakrishnan V et al (1991) Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258CrossRefGoogle Scholar
  22. 22.
    Trueman CNG, Behrensmeyer AK et al (2009) Why do crystallinity values fail to predict the extend of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266(3–4):160–167Google Scholar
  23. 23.
    Reiche I (2009) Hétérogénéités de la composition chimique et de la structure des ossements archéologiques provenant du site néolithique de Chalain 19 (Jura, France) induites par la chauffe et la diagenèse. Palethnologie 2:16Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ina Reiche
    • 1
  • Matthieu Lebon
    • 1
    • 2
  • Céline Chadefaux
    • 1
  • Katharina Müller
    • 1
  • Anne-Solenn Le Hô
    • 1
  • Michael Gensch
    • 3
  • Ulrich Schade
    • 3
  1. 1.UMR 171 CNRS, Laboratoire du Centre de Recherche et de Restauration des Musées de FrancePalais du Louvre-Porte des LionsParisFrance
  2. 2.UMR 5198 CNRS, Département de PréhistoireMuséum national d’Histoire naturelleParisFrance
  3. 3.IRIS Beamline, BESSY IIHelmholtz-Zentrum Berlin für Materialien und Energien (HZB)BerlinGermany

Personalised recommendations