Analytical and Bioanalytical Chemistry

, Volume 397, Issue 6, pp 2095–2108 | Cite as

Infrared and X-ray simultaneous spectroscopy: a novel conceptual beamline design for time resolved experiments

Original Paper

Abstract

Many physical/chemical processes such as metal–insulator transitions or self-assembly phenomena involve correlated changes of electronic and atomic structure in a wide time range from microseconds to minutes. To investigate these dynamic processes we not only need a highly brilliant photon source in order to achieve high spatial and time resolution but new experimental methods have to be implemented. Here we present a new optical layout for performing simultaneous or concurrent infrared and X-ray measurements. This approach may indeed return unique information for example the interplay between structural changes and chemical processes occurring in the investigated sample. A beamline combining two X-ray and IR beams may really take advantage of the unique synchrotron radiation properties: the high brilliance and the broad spectrum. In this contribution we will describe the conceptual layout and the expected performance of a complex system designed to collect IR and X-ray radiation from the same bending magnet on a third-generation synchrotron radiation ring. If realized, this beamline will enable time-resolved spectroscopy experiments offering new scientific opportunities at the frontiers of science.

Keywords

Synchrotron radiation instrumentation X-ray absorption spectroscopy EXAFS, XANES, etc. Infrared spectrometers, auxiliary equipment, and techniques Time resolved spectroscopy 

References

  1. 1.
  2. 2.
    Bras W, Derbyshire GE, Bogg D, Cooke J, Elwell MJ, Komanschek BU, Naylor S, Ryan A (1995) Science 267:996CrossRefGoogle Scholar
  3. 3.
    Innocenzi P, Malfatti L, Kidchob T, Costacurta S, Falcaro P, Piccinini M, Marcelli A, Morini P, Sali D, Amenitsch H (2007) J Phys Chem C 111:5345CrossRefGoogle Scholar
  4. 4.
    Marcelli A, Hampai D, Xu W, Malfatti L, Innocenzi P (2009) Acta Phys Pol A 115:489Google Scholar
  5. 5.
    Wende H (2004) Rep Prog Phys 67(12):2105–2181CrossRefGoogle Scholar
  6. 6.
    Natoli CR, Benfatto M, Della Longa S, Hatada K (2003) J Sync Rad 10:26CrossRefGoogle Scholar
  7. 7.
    Brown FC, Hartman PL, Kruger PG, Lax B, Smith RA, Vineyard G (1966) Synchrotron radiation as a source for the spectroscopy of solids. NRC Solid State Panel Subcommittee RepGoogle Scholar
  8. 8.
    Stevenson JR, Ellis H, Bartlett R (1973) Appl Opt 12:2884CrossRefGoogle Scholar
  9. 9.
    Duncan W, Williams GP (1983) Appl Opt 22:2914–2922CrossRefGoogle Scholar
  10. 10.
    Yarwood J, Shuttleworth T, Hasted JB, Nanba T (1984) Nature 312:742CrossRefGoogle Scholar
  11. 11.
    Nanba T, Urashima Y, Ikezawa M, Watanabe M, Nakamura E, Fukui K, Inokuchi H (1986) Int J Infr Mill Wav 7:1769CrossRefGoogle Scholar
  12. 12.
    Nanba T (1989) Rev Sci Instrum 60:1680CrossRefGoogle Scholar
  13. 13.
    Marcelli A, Innocenzi P (2007) A new beamline concept for fast IR and X-ray simultaneous spectroscopy, Diamond User Meeting (Oxford, September 13–14)Google Scholar
  14. 14.
    Pascarelli S, Mathon O, Munõz M, Mairs T, Susini J (2006) J Sync Rad 13:351CrossRefGoogle Scholar
  15. 15.
    Freund AK (1987) ESRF internal report: X-ray optics, Part1Google Scholar
  16. 16.
  17. 17.
  18. 18.
  19. 19.
    Sanchez del Río M, Dejus RJ. Synchrotron Radiation Instrumentation, 8th International Conference on Synchrotron Radiation Instrumentation, Warwick T et al. (eds) (2004) AIPGoogle Scholar
  20. 20.
    Dumas P, Polack F, Lagarde B, Chubar O, Giorgetta JL, Lefrançois S (2006) Inf Phys Tech 49:152CrossRefGoogle Scholar
  21. 21.
  22. 22.
    D’Acapito F, Boscherini F, Marcelli A, Mobilio S (1992) Rev Sci Instrum 63:899CrossRefGoogle Scholar
  23. 23.
    Hettel RO (2002) Rev Sci Instrum 73:1396CrossRefGoogle Scholar
  24. 24.
    Parratt LG (1954) Phys Rev 95:359CrossRefGoogle Scholar
  25. 25.
    Gibaud A, Hazra S (2000) Curr Sci 78:1467Google Scholar
  26. 26.
    Headspith J, Groves J, Luke PN, Kogimtzis M, Salvini G, Thomas SL, Farrow RC, Evans J, Rayment T, Lee JS, Goward WD, Amman M, Mathon O, Diaz-Moreno S. The Nuclear Science Symposium Conference Record, 2007. NSS '07. IEEEGoogle Scholar
  27. 27.
    Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marcott C, Levin IW (1995) Anal Chem 67:3377CrossRefGoogle Scholar
  28. 28.
    Lobo RPSM, LaVeigne JD, Reitze DH, Tanner DB, Carr GL (1999) Rev Sci Instrum 70:2899CrossRefGoogle Scholar
  29. 29.
    Stern EA, Heald SM (1987) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. WileyGoogle Scholar
  30. 30.
    Hastings JB. (Energy Citation Database BNL-28946; CONF-791139-1) Applications of EXAFS to Materials Science Conf., Boston, MA (USA), November 1979Google Scholar
  31. 31.
  32. 32.
    SSRF Internal Report The lattice design of SSRF, 2004Google Scholar
  33. 33.
  34. 34.
    BSRF Internal Report URAP-GL-022BEPCII, 2006Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Augusto Marcelli
    • 1
  • Wei Xu
    • 1
    • 2
  • Dariush Hampai
    • 1
  • Luca Malfatti
    • 3
  • Plinio Innocenzi
    • 3
  • Ulrich Schade
    • 4
  • Ziyu Wu
    • 2
    • 5
  1. 1.INFN- Laboratori Nazionali di FrascatiFrascati, RomeItaly
  2. 2.Institute of High Energy PhysicsChinese Academy of ScienceBeijingChina
  3. 3.Laboratorio di Scienza dei Materiali e NanotecnologieUniversità di SassariAlghero, SassariItaly
  4. 4.Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Elektronenspeicherring - BESSY IIBerlinGermany
  5. 5.NSRLUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations