Analytical and Bioanalytical Chemistry

, Volume 397, Issue 8, pp 3377–3385 | Cite as

Contact printing of arrayed microstructures

  • Wei Xu
  • Alicia M. Luikart
  • Christopher E. Sims
  • Nancy L. AllbrittonEmail author
Original Paper


A novel contact printing method utilizing a sacrificial layer of polyacrylic acid (PAA) was developed to selectively modify the upper surfaces of arrayed microstructures. The method was characterized by printing polystyrene onto SU-8 microstructures to create an improved substrate for a cell-based microarray platform. Experiments measuring cell growth on SU-8 arrays modified with polystyrene and fibronectin demonstrated improved growth of NIH 3T3 (93% vs. 38%), HeLa (97% vs. 77%), and HT1080 (76% vs. 20%) cells relative to that for the previously used coating method. In addition, use of the PAA sacrificial layer permitted the printing of functionalized polystyrene, carboxylate polystyrene nanospheres, and silica nanospheres onto the arrays in a facile manner. Finally, a high concentration of extracellular matrix materials (ECM), such as collagen (5 mg/mL) and gelatin (0.1%), was contact-printed onto the array structures using as little as 5 μL of the ECM reagent and without the formation of a continuous film bridge across the microstructures. Murine embryonic stem cells cultured on arrays printed with this gelatin hydrogel remained in an undifferentiated state indicating an adequate surface gelatin layer to maintain these cells over time.


Contact printing Microfabrication SU-8 Cell culture Micropallet 



This research was supported by NIH (EB007612 and HG004843). The authors thank Chapel Hill Analytical and Nanofabrication Laboratory (CHANL) for providing access to the facility’s instrumentation. The authors also thank Dr. Yuli Wang for valuable discussions and Colleen Phillips and Jonathan Clark for technical support.

Supplementary material

216_2010_3728_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1178 kb)


  1. 1.
    Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. PNAS 103:2480–2487CrossRefGoogle Scholar
  2. 2.
    Paguirigan AL, Beebe DJ (2008) Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 30:811–821CrossRefGoogle Scholar
  3. 3.
    Gomez F (2008) Biological applications of microfluidics. Wiley, HobokenGoogle Scholar
  4. 4.
    Yarmush ML, King KR (2009) Living-cell microarrays. Annu Rev Biomed Eng 11:235–257CrossRefGoogle Scholar
  5. 5.
    Sims CE, Allbritton NL (2007) Analysis of single mammalian cells on-chip. Lab Chip 7:423–440CrossRefGoogle Scholar
  6. 6.
    Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS (2009) High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27:342–349CrossRefGoogle Scholar
  7. 7.
    Pirone DM, Chen CS (2004) Strategies for engineering the adhesive microenvironment. J Mammary Gland Biol Neoplasia 9:405–417CrossRefGoogle Scholar
  8. 8.
    Rehfeldt F, Engler AJ, Eckhardt A, Ahmed F, Discher DE (2007) Cell responses to the mechanochemical microenvironment—implications for regenerative medicine and drug delivery. Adv Drug Deliv Rev 59:1329–1339CrossRefGoogle Scholar
  9. 9.
    Wang Y, Bachman M, Sims CE, Li GP, Allbritton NL (2006) Simple photografting method to chemically modify and micropattern the surface of SU-8 photoresist. Langmuir 22:2719–2725CrossRefGoogle Scholar
  10. 10.
    Dittami GM, Ayliffe HE, King CS, Rabbitt RD (2008) A multilayer MEMS platform for single-cell electric impedance spectroscopy and electrochemical analysis. J Microelectromech Syst 17:850–862CrossRefGoogle Scholar
  11. 11.
    Wakamoto Y, Inoue I, Moriguchi H, Yasuda K (2001) Analysis of single-cell differences by use of an on-chip microculture system and optical trapping. Fresen J Anal Chem 371:276–281CrossRefGoogle Scholar
  12. 12.
    Wu M-H, Cai H, Xu X, Urban JPG, Cui Z-F, Cui Z (2005) A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring. Biomed Microdevices 7:323–329CrossRefGoogle Scholar
  13. 13.
    Umehara S, Wakamoto Y, Inoue I, Yasuda K (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophys Res Commun 305:534–540CrossRefGoogle Scholar
  14. 14.
    Chronis N, Lee LP (2004) Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst 14:857–863CrossRefGoogle Scholar
  15. 15.
    Calleja M, Tamayo J, Nordström M, Boisen A (2006) Low-noise polymeric nanomechanical biosensors. Appl Phys Lett 88:113901–113903CrossRefGoogle Scholar
  16. 16.
    Johansson A, Calleja M, Rasmussen PA, Boisen A (2005) SU-8 cantilever sensor system with integrated readout. Sens Actuators A Phys 123–124:111–115Google Scholar
  17. 17.
    Shew BY, Kuo CH, Huang YC, Tsai YH (2005) UV-LIGA interferometer biosensor based on the SU-8 optical waveguide. Sens Actuators A Phys 120:383–389CrossRefGoogle Scholar
  18. 18.
    Wang L, Wu Z-Z, Xu B, Zhao Y, Kisaalita WS (2009) SU-8 microstructure for quasi-three-dimensional cell-based biosensing. Sens Actuators B Chem 140:349–355CrossRefGoogle Scholar
  19. 19.
    Wu ZZ, Zhao Y, Kisaalita WS (2006) Interfacing SH-SY5Y human neuroblastoma cells with SU-8 microstructures. Colloids Surf B Biointerfaces 52:14–21CrossRefGoogle Scholar
  20. 20.
    Wang Y, Young G, Bachman M, Sims CE, Li GP, Allbritton NL (2007) Collection and expansion of single cells and colonies released from a micropallet array. Anal Chem 79:2359–2366CrossRefGoogle Scholar
  21. 21.
    Kotzar G, Freas M, Abel P, Fleischman A, Roy S, Zorman C, Moran JM, Melzak J (2002) Evaluation of MEMS materials of construction for implantable medical devices. Biomater 23:2737–2750CrossRefGoogle Scholar
  22. 22.
    Voskerician G, Shive MS, Shawgo RS, von Recum H, Anderson JM, Cima MJ, Langer R (2003) Biocompatibility and biofouling of MEMS drug delivery devices. Biomater 24:1959–1967CrossRefGoogle Scholar
  23. 23.
    Grayson ACR, Shawgo RS, Johnson AM, Flynn NT, Li Y, Cima MJ, Langer RA (2004) BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE 92:6–21CrossRefGoogle Scholar
  24. 24.
    Weisenberg BA, Mooradian DL (2002) Hemocompatibility of materials used in microelectromechanical systems: platelet adhesion and morphology in vitro. J Biomed Mater Res 60:283–291CrossRefGoogle Scholar
  25. 25.
    Stangegaard M, Wang Z, Kutter JP, Dufva M, Wolff A (2006) Whole genome expression profiling using DNA microarray for determining biocompatibility of polymeric surfaces. Mol Biosyst 2:421–428CrossRefGoogle Scholar
  26. 26.
    Hennemeyer M, Walther F, Kerstan S, Schürzinger K, Gigler AM, Stark RW (2008) Cell proliferation assays on plasma activated SU-8. Microelectron Engr 85:1298–1301CrossRefGoogle Scholar
  27. 27.
    Tao SL, Popat KC, Norman JJ, Desai TA (2008) Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties. Langmuir 24:2631–2636CrossRefGoogle Scholar
  28. 28.
    Vernekar VN, Cullen DK, Fogleman N, Choi Y, Garcia AJ, Allen MG, Brewer GJ, LaPlaca MC (2009) SU-8 2000 rendered cytocompatible for neuronal bioMEMS applications. J Biomed Mater Res A 89:138–151Google Scholar
  29. 29.
    Pai JH, Wang Y, Salazar GT, Sims CE, Bachman M, Li GP, Allbritton NL (2007) Photoresist with low fluorescence for bioanalytical applications. Anal Chem 79:8774–8780CrossRefGoogle Scholar
  30. 30.
    Wang Y, Sims CE, Marc P, Bachman M, Li GP, Allbritton NL (2006) Micropatterning of living cells on a heterogeneously wetted surface. Langmuir 22:8257–8262CrossRefGoogle Scholar
  31. 31.
    Hu S, Ren X, Bachman M, Sims CE, Li GP, Allbritton NL (2004) Tailoring the surface properties of poly(dimethylsiloxane) microfluidic devices. Langmuir 20:5569–5574CrossRefGoogle Scholar
  32. 32.
    Stevens MP (1999) Polymer chemistry: an introduction. Oxford University Press, LondonGoogle Scholar
  33. 33.
    Salazar GT, Wang Y, Young G, Bachman M, Sims CE, Li GP, Allbritton NL (2007) Micropallet arrays for the separation of single, adherent cells. Anal Chem 79:682–687CrossRefGoogle Scholar
  34. 34.
    Shadpour H, Sims CE, Thresher RJ, Allbritton NL (2009) Sorting and expansion of murine embryonic stem cell colonies using micropallet arrays. Cytom A 75:121–129CrossRefGoogle Scholar
  35. 35.
    Quinto-Su PA, Salazar GT, Sims CE, Allbritton NL, Venugopalan V (2008) Mechanism of pulsed laser microbeam release of SU-8 2100 polymer micropallets for the collection and separation of adherent cells. Anal Chem 80:4675–4679CrossRefGoogle Scholar
  36. 36.
    Linder V, Gates BD, Ryan D, Parviz BA, Whitesides GM (2005) Water-soluble sacrificial layers for surface micromachining. Small 1:730–736CrossRefGoogle Scholar
  37. 37.
    Ramsey WS, Hertl W, Nowlan ED, Binkowski NJ (1984) Surface treatments and cell attachment. In Vitr 20:802–808CrossRefGoogle Scholar
  38. 38.
    Yamamoto A, Mishima S, Maruyama N, Sumita M (2000) Quantitative evaluation of cell attachment to glass, polystyrene, and fibronectin- or collagen-coated polystyrene by measurement of cell adhesive shear force and cell detachment energy. J Biomed Mater Res 50:114–124CrossRefGoogle Scholar
  39. 39.
    Steele JG, Dalton BA, Johnson G, Underwood PA (1995) Adsorption of fibronectin and vitronectin onto Primaria and tissue culture polystyrene and relationship to the mechanism of initial attachment of human vein endothelial cells and BHK-21 fibroblasts. Biomater 16:1057–1067CrossRefGoogle Scholar
  40. 40.
    Heo J, Lee JS, Chu IS, Takahama Y, Thorgeirsson SS (2005) Spontaneous differentiation of mouse embryonic stem cells in vitro: characterization by global gene expression profiles. Biochem Biophys Res Commun 332:1061–1069CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Wei Xu
    • 1
  • Alicia M. Luikart
    • 1
  • Christopher E. Sims
    • 1
  • Nancy L. Allbritton
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of ChemistryUniversity of North CarolinaChapel HillUSA
  2. 2.Joint Department of Biomedical EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Joint Department of Biomedical EngineeringUniversity of North CarolinaChapel HillUSA

Personalised recommendations