Analytical and Bioanalytical Chemistry

, Volume 397, Issue 8, pp 3185–3193 | Cite as

Mass spectral imaging and profiling of neuropeptides at the organ and cellular domains

  • Ruibing Chen
  • Lingjun LiEmail author


Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a rapid and sensitive analytical method that is well suited for determining molecular weights of peptides and proteins from complex samples. MALDI-MS can be used to profile the peptides and proteins from single-cell and small tissue samples without the need for extensive sample preparation. Furthermore, the recently developed MALDI imaging technique enables mapping of the spatial distribution of signaling molecules in tissue samples. Several examples of signaling molecule analysis at the single-cell and single-organ levels using MALDI-MS technology are highlighted followed by an outlook of future directions.


Overview of tissue-based mass spectrometric analysis strategies for neuropeptide discovery and distribution study. Direct MALDI analysis can be performed on single cells or small piece of tissues for neuropeptide profiling and novel neuropeptide discovery. MALDI imaging is powerful to study the spatial distribution of neuropeptides in larger and more complex organs, such as brain.


Neuropeptides Mass spectrometric imaging MALDI-MS Direct tissue profiling Single-cell measurements 



Preparation of this manuscript was supported in part by a National Science Foundation CAREER Award (CHE-0449991), National Institutes of Health through grant 1R01DK071801. L.L. acknowledges an Alfred P. Sloan Research Fellowship and Vilas Associate Award.


  1. 1.
    Audsley N, Weaver RJ (2009) Neuropeptides associated with the regulation of feeding in insects. Gen Comp Endocrinol 162:93–104CrossRefGoogle Scholar
  2. 2.
    Mercier AJ, Friedrich R, Boldt M (2003) Physiological functions of FMRFamide-like peptides (FLPs) in crustaceans. Microsc Res Tech 60:313–324CrossRefGoogle Scholar
  3. 3.
    Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316CrossRefGoogle Scholar
  4. 4.
    Li L, Garden RW, Romanova EV, Sweedler JV (1999) In situ sequencing of peptides from biological tissues and single cells using MALDI-PSD/CID analysis. Anal Chem 71:5451–5458CrossRefGoogle Scholar
  5. 5.
    Jiménez CR, Li KW, Dreisewerd K, Spijker S, Kingston R, Bateman RH, Burlingame AL, Smit AB, van Minnen J, Geraerts WP (1998) Direct mass spectrometric peptide profiling and sequencing of single neurons reveals differential peptide patterns in a small neuronal network. Biochemistry 37:2070–2076CrossRefGoogle Scholar
  6. 6.
    Li L, Garden RW, Sweedler JV (2000) Single-cell MALDI: a new tool for direct peptide profiling. Trends Biotechnol 18:151–160CrossRefGoogle Scholar
  7. 7.
    Garden RW, Moroz LL, Moroz TP, Shippy SA, Sweedler JV (1996) Excess salt removal with matrix rinsing: direct peptide profiling of neurons from marine invertebrates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 31:1126–1130CrossRefGoogle Scholar
  8. 8.
    Kutz KK, Schmidt JJ, Li L (2004) In situ tissue analysis of neuropeptides by MALDI FTMS in-cell accumulation. Anal Chem 76:5630–5640CrossRefGoogle Scholar
  9. 9.
    Li KW, Hoek RM, Smith F, Jimenez CR, van der Schors RC et al (1994) Direct peptide profiling by mass spectrometry of single identified neurons reveals complex neuropeptide-processing pattern. J Biol Chem 269:30288–30292Google Scholar
  10. 10.
    Li KW, Jimenez CR, Van Veelen PA, Geraerts WP (1994) Processing and targeting of a molluscan egg-laying peptide prohormone as revealed by mass spectrometric peptide fingerprinting and peptide sequencing. Endocrinology 134:1812–1819CrossRefGoogle Scholar
  11. 11.
    Floyd PD, Li L, Rubakhin SS, Sweedler JV, Horn CC, Kupfermann I, Alexeeva VY, Ellis TA, Dembrow NC, Weiss KR, Vilim FS (1999) Insulin prohormone processing, distribution, and relation to metabolism in Aplysia californica. J Neurosci 19:7732–7741Google Scholar
  12. 12.
    Garden RW, Moroz TP, Gleeson JM, Floyd PD, Li L, Rubakhin SS, Sweedler JV (1999) Formation of N-pyroglutamyl peptides from N-Glu and N-Gln precursors in Aplysia neurons. J Neurochem 72:676–681CrossRefGoogle Scholar
  13. 13.
    Neupert S, Predel R (2005) Mass spectrometric analysis of single identified neurons of an insect. Biochem Biophys Res Commun 327:640–645CrossRefGoogle Scholar
  14. 14.
    Neupert S, Schattschneider S, Predel R (2009) Allatotropin-related peptide in cockroaches: identification via mass spectrometric analysis of single identified neurons. Peptides 30:489–494CrossRefGoogle Scholar
  15. 15.
    Rubakhin SS, Sweedler JV (2007) Characterizing peptides in individual mammalian cells using mass spectrometry. Nat Protoc 2:1987–1997CrossRefGoogle Scholar
  16. 16.
    Rubakhin SS, Garden RW, Fuller RR, Sweedler JV (2000) Measuring the peptides in individual organelles with mass spectrometry. Nat Biotechnol 18:172–175CrossRefGoogle Scholar
  17. 17.
    Ma M, Chen R, Ge Y, He H, Marshall AG, Li L (2009) Combining bottom-up and top-down mass spectrometric strategies for de novo sequencing of the crustacean hyperglycemic hormone from Cancer borealis. Anal Chem 81:240–247CrossRefGoogle Scholar
  18. 18.
    Chen R, Hui L, Sturm RM, Li L (2009) Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging. J Am Soc Mass Spectrom 20:1068–1077CrossRefGoogle Scholar
  19. 19.
    Rubakhin SS, Greenough WT, Sweedler JV (2003) Spatial profiling with MALDI MS: distribution of neuropeptides within single neurons. Anal Chem 75:5374–5380CrossRefGoogle Scholar
  20. 20.
    Sugiura Y, Shimma S, Setou M (2006) Thin sectioning improves the peak intensity and signal-to-noise ratio in direct tissue mass spectrometry. J Mass Spectrom Soc Jpn 54:45–48Google Scholar
  21. 21.
    Altelaar AF, Klinkert I, Jalink K, de Lange RP, Adan RA, Heeren RM, Piersma SR (2006) Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem 78:734–742CrossRefGoogle Scholar
  22. 22.
    Lemaire R, Tabet JC, Ducoroy P, Hendra JB, Salzet M, Fournier I (2006) Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem 78:809–819CrossRefGoogle Scholar
  23. 23.
    Jurchen JC, Rubakhin SS, Sweedler JV (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom 16:1654–1659CrossRefGoogle Scholar
  24. 24.
    Groseclose MR, Andersson M, Hardesty WM, Caprioli RM (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom 42:254–262CrossRefGoogle Scholar
  25. 25.
    Hsieh Y, Chen J, Korfmacher WA (2007) Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry. J Pharmacol Toxicol Meth 55:193–200CrossRefGoogle Scholar
  26. 26.
    Drexler DM, Garrett TJ, Cantone JL, Diters RW, Mitroka JG, Prieto Conaway MC, Adams SP, Yost RA, Sanders M (2007) Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues. J Pharmacol Toxicol Methods 55:279–288CrossRefGoogle Scholar
  27. 27.
    Altelaar AF, Van Minnen J, Jimenez CR, Heeren RM, Pierma SR (2005) Direct molecular imaging of Lymnaea stagnalis nervous tissue at subcellular spatial resolution by mass spectrometry. Anal Chem 77:735–741CrossRefGoogle Scholar
  28. 28.
    Monroe EB, Annangudi SP, Hatcher NG, Gutstein HB, Rubakhin SS, Sweedler JV (2008) SIMS and MALDI MS imaging of the spinal cord. Proteomics 8:3746–3754CrossRefGoogle Scholar
  29. 29.
    Kruse R, Sweedler JV (2003) Spatial profiling invertebrate ganglia using MALDI MS. J Am Soc Mass Spectrom 14:752–759CrossRefGoogle Scholar
  30. 30.
    DeKeyser SS, Kutz-Naber KK, Schmidt JJ, Barrett-Wilt GA, Li L (2007) Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues. J Proteome Res 6:1782–1791CrossRefGoogle Scholar
  31. 31.
    Franck J, El Ayed M, Wisztorski M, Salzet M, Fournier I (2009) On-tissue N-termial peptide derivatization for enhancing protein identification in MALDI mass spectrometric imaging strategies. Anal Chem 81:8305–8317CrossRefGoogle Scholar
  32. 32.
    Sheeley SA, Miao H, Ewing MA, Rubakhin SS, Sweedler JV (2005) Measuring D-amino acid-containing neuropeptides with capillary electrophoresis. Analyst 130:1198–1203CrossRefGoogle Scholar
  33. 33.
    Wang J, Ma M, Chen R, Li L (2008) Enhanced neuropeptide profiling via capillary electrophoresis off-line coupled with MALDI FTMS. Anal Chem 80:6168–6177CrossRefGoogle Scholar
  34. 34.
    Hsieh S, Dreisewerd K, van der Schors RC, Jimenez CR, Stahi-Zeng J, Hillenkamp F, Jorgenson JW, Geraerts WP, Li KW (1998) Separation and identification of peptides in single neurons by microcolumn liquid chromatography-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and postsource decay analysis. Anal Chem 70:1847–1852CrossRefGoogle Scholar
  35. 35.
    Jiménez CR, Li KW, Dreisewerd K, Mansvelder HD, Brussaard AB, Reinhold BB, Van der Schors RC, Karas M, Hillenkamp F, Burbach JP, Costello CE, Geraerts WP (1997) Pattern changes of pituitary peptides in rat after salt-loading as detected by means of direct, semiquantitative mass spectrometric profiling. Proc Natl Acad Sci U S A 94:9481–9486CrossRefGoogle Scholar
  36. 36.
    Jiménez CR, ter Maat A, Pieneman A, Burlingame AL, Smit AB, Li KW (2004) Spatio-temporal dynamics of the egg-laying-inducing peptides during an egg-laying cycle: a semiquantitative matrix-assisted laser desorption/ionization mass spectrometry approach. J Neurochem 89:865–875CrossRefGoogle Scholar
  37. 37.
    Jiménez CR, Li KW, Smit AB, Janse C (2006) Auto-inhibitory control of peptidergic molluscan neurons and reproductive senescence. Neurobiol Aging 27:763–769CrossRefGoogle Scholar
  38. 38.
    DeKeyser SS, Li L (2006) Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry quantitation via in cell combination. Analyst 131:281–290CrossRefGoogle Scholar
  39. 39.
    Rubakhin SS, Sweedler JV (2008) Quantitative measurements of cell-cell signaling peptides with single-cell MALDI MS. Anal Chem 80:7128–7136CrossRefGoogle Scholar
  40. 40.
    Monroe EB, Jurchen JC, Koszczuk BA, Losh JL, Rubakhin SS, Sweedler JV (2006) Massively parallel sample preparation for the MALDI MS analyses of tissues. Anal Chem 78:6826–6832CrossRefGoogle Scholar
  41. 41.
    Mustafa D, Kros JM, Luider T (2008) Combining laser capture microdissection and proteomics techniques. Methods Mol Biol 428:159–178CrossRefGoogle Scholar
  42. 42.
    Jiménez CR, van Veelen PA, Li KW, Wildering WC, Geraerts WP, Tjaden UR, van der Greef J (1994) Neuropeptide expression and processing as revealed by direct matrix-assisted laser desorption ionization mass spectrometry of single neurons. J Neurochem 62:404–407CrossRefGoogle Scholar
  43. 43.
    Li L, Garden RW, Floyd PD, Moroz TP, Gleeson JM, Sweedler JV, Pasa-Tolic L, Smith RD (1999) Egg-laying hormone peptides in the aplysiidae family. J Exp Biol 202:2961–2973Google Scholar
  44. 44.
    Yew Y, Dikler S, Stretton AO (2003) De novo sequencing of novel neuropeptides directly from Ascaris suum tissue using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight. Rapid Commun Mass Spectrom 17:2693–2698CrossRefGoogle Scholar
  45. 45.
    Yasuda A, Yasuda-Kamatani Y, Nozaki M, Nakajima T (2004) Identification of GYRKPPFNGSIFamide (crustacean-SIFamide) in the crayfish Procambarus clarkii by topological mass spectrometry analysis. Gen Comp Endocrinol 135:391–400CrossRefGoogle Scholar
  46. 46.
    Redeker V, Toullec JY, Vinh J, Rossier J, Soyez D (1998) Combination of peptide profiling by matrix-assisted laser desorption/ionization time of flight mass spectrometry and immunodetection on single glands or cells. Anal Chem 70:1805–1811CrossRefGoogle Scholar
  47. 47.
    Li L, Pulver SR, Kelley WP, Thirumalai V, Sweedler JV, Marder E (2002) Orcokinin peptides in developing and adult crustacean stomatogastric nervous systems and pericardial organs. J Comp Neurol 444:227–244CrossRefGoogle Scholar
  48. 48.
    Christie AE, Kutz-Naber KK, Stemmler EA, Klein A, Messinger DI, Dickinson PS (2007) Midgut epithelial endocrine cells are a rich source of the neuropeptides APSGFLGMRamide (Cancer borealis tachykinin-related peptide Ia) and GYRKPPFNGSIFamide (Gly1-SIFamide) in the crabs Cancer borealis, Cancer magister and Cancer productus. J Exp Biol 210:699–714CrossRefGoogle Scholar
  49. 49.
    DeKeyser SS, Kutz-Naber KK, Schmidt JJ, Barrett-Wilt GA, Li L (2007) Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues. J Proteome Res 6:1782–1791CrossRefGoogle Scholar
  50. 50.
    Fu Q, Kutz KK, Schmidt JJ, Hsu YW, Messinger DI, Cain SD, de la Iglesia HO, Christie AE, Li L (2005) Hormone complement of the Cancer productus sinus gland and pericardial organ: an anatomical and mass spectrometric investigation. J Comp Neurol 493:607–626CrossRefGoogle Scholar
  51. 51.
    Ma M, Bors EK, Dickinson ES, Kwiatkowski MA, Sousa GL, Henry RP, Smith CM, Towle DW, Christie AE, Li L (2009) Characterization of the Carcinus maenas neuropeptidome by mass spectrometry and functional genomics. Gen Comp Endocrinol 161:320–334CrossRefGoogle Scholar
  52. 52.
    Wegener C, Gorbashov A (2008) Molecular evolution of neuropeptides in the genus Drosophila. Genome Biol 9:R131CrossRefGoogle Scholar
  53. 53.
    Neupert S, Russell WK, Russell DH, Lopez JD Jr, Predel R, Nachman RJ (2009) Neuropeptides in Heteroptera: identification of allatotropin-related peptide and tachykinin-related peptides using MALDI-TOF mass spectrometry. Peptides 30:483–488CrossRefGoogle Scholar
  54. 54.
    Neupert S, Predel R, Russell WK, Davies R, Pietrantonio PV, Nachman RJ (2005) Identification of tick periviscerokinin, the first neurohormone of Ixodidae: single cell analysis by means of MALDI-TOF/TOF mass spectrometry. Biochem Biophys Res Commun 338:1860–1864CrossRefGoogle Scholar
  55. 55.
    Taban IM, Altelaar AF, van der Burgt YE, McDonnell LA, Heeren RM, Fuchser J, Baykut G (2007) Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry. J Am Soc Mass Spectrom 18:145–151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Chemistry & School of PharmacyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Research Center of Basic Medical SciencesTianjin Medical UniversityTianjinChina

Personalised recommendations