Analytical and Bioanalytical Chemistry

, Volume 397, Issue 6, pp 2143–2148 | Cite as

3D visualization of the microstructure of Quedius beesoni Cameron using micro-CT

  • Kai Zhang
  • De-e Li
  • Peiping Zhu
  • Qingxi Yuan
  • Wanxia Huang
  • Xiaosong Liu
  • Youli Hong
  • Gun Gao
  • Xin Ge
  • Hongzhang Zhou
  • Ziyu Wu
Original Paper

Abstract

The investigation of the internal morphology of insects is usually performed using classical microtomy yielding optical micrographs of stained thin sections. The achievement of high-quality cross sections for microtomy is time-consuming and the risk of damaging sections is unavoidable. Moreover, the approach is impractical, in particular when quick acquisition of 3D structural information is required. Recently, X-ray computed microtomography (micro-CT) with a high spatial resolution was considered as a potential tool for the morphological classification of insects. We used micro-CT to investigate Quedius beesoni Cameron at the cellular length scale. This method provides a new powerful and nondestructive approach to obtain 3D structural information on the biological organization of insects. The preliminary images presented in this contribution clearly reveal the endoskeleton and the muscles of the head and the thorax with a full 3D structure. We also reconstructed the 3D structure of the brain of Quedius beesoni Cameron, and this is the first reconstruction in Staphylinidae, which will be a great advancement for morphological and phylogenic research. We claim that both the spatial resolution and the contrast characteristic of micro-CT imaging may fulfill the requirements necessary for zoological insect morphology and phylogeny, in particular, when a classification of a rare and unique insect specimen is required.

Keywords

Tomography Staphylinidae Morphology X-ray image 

Notes

Acknowledgements

This work was partly supported by the National Outstanding Youth Fund (project no. 10125523 to Z.W.), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N42), the Key Important Project of the National Natural Science Foundation of China (10734070), the National Natural Science Foundation of China (NSFC 10774144 and 10979055), and the National Basic Research Program of China (2009CB930804).

References

  1. 1.
    Hounsfield G (1973) Br J Radiol 46:1016CrossRefGoogle Scholar
  2. 2.
    Peyrina F, Salomea M, Cloetensb P et al (1998) Technol Health Care 6:391–401Google Scholar
  3. 3.
    Holdsworth D, Thornton M (2002) Trends Biotechnol 20:34–39CrossRefGoogle Scholar
  4. 4.
    Betz O, Thayer M, Newton A (2003) Acta Zool 84:179–238CrossRefGoogle Scholar
  5. 5.
    Jorgensen S, Demirkaya O, Ritman E (1998) Am J Physiol Heart Circ Physiol 275:H1103Google Scholar
  6. 6.
    Herman L (2001) Catalog of the Staphylinidae (Insecta: Coleoptera): 1758 to the end of the second millennium. American Museum of Natural History, New YorkGoogle Scholar
  7. 7.
    Blackwelder R (1936) Smithson Misc Collect 94:1–102Google Scholar
  8. 8.
    Naomi S (1987) Jpn J Entomol 55:450–458Google Scholar
  9. 9.
    Naomi S (1989) Jpn J Entomol 57:82–90Google Scholar
  10. 10.
    Betz O (1996) Zoomorphology 116:15–34CrossRefGoogle Scholar
  11. 11.
    Kölsch G, Betz O (1998) Zoomorphology 118:263–272CrossRefGoogle Scholar
  12. 12.
    Gorb S, Beutel R (2000) J Morphol 244:1–14CrossRefGoogle Scholar
  13. 13.
    Hörnschemeyer T, Beutel R, Pasop F (2002) J Morphol 252:298–314CrossRefGoogle Scholar
  14. 14.
    Beutel R, Ge S, Hörnschemeyer T (2008) Cladistics 24:270–298CrossRefGoogle Scholar
  15. 15.
    Weide D, Betz O (2009) J Morphol 270:1503–1523CrossRefGoogle Scholar
  16. 16.
    Zhu PP, Wang JY, Yuan QX et al (2005) Appl Phys Lett 87:264101–264103CrossRefGoogle Scholar
  17. 17.
    Wang J, Zhu P, Yuan Q et al (2006) Phys Med Biol 51:3391–3396CrossRefGoogle Scholar
  18. 18.
    Chapman D, Thomlinson W, Johnston R et al (1997) Phys Med Biol 42:2015–2026CrossRefGoogle Scholar
  19. 19.
    Momose A (2002) J Synchrotron Radiat 9:136–142CrossRefGoogle Scholar
  20. 20.
    Wilkins S, Gureyev T, Gao D et al (1996) Nature 384:335–338CrossRefGoogle Scholar
  21. 21.
    Davis T, Gao D, Gureyev T et al (1995) Nature 373:595–598CrossRefGoogle Scholar
  22. 22.
    Gureyev TE, Mayo S, Wilkins SW et al (2001) Phys Rev Lett 86:5827CrossRefGoogle Scholar
  23. 23.
    Chao W, Harteneck B, Liddle J et al (2005) Nature 435:1210–1213CrossRefGoogle Scholar
  24. 24.
    Wieland M, Wilhein T, Spielmann C et al (2003) Appl Phys B Lasers Opt 76:885–889CrossRefGoogle Scholar
  25. 25.
    Cloetens P, Barrett R, Baruchel J et al (1996) J Phys D Appl Phys 29:133–146CrossRefGoogle Scholar
  26. 26.
    Lewis R (1997) Phys Med Biol 42:1213–1243CrossRefGoogle Scholar
  27. 27.
    Kron T (1998) Phys Med Biol 43:215–216CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kai Zhang
    • 1
  • De-e Li
    • 2
  • Peiping Zhu
    • 1
  • Qingxi Yuan
    • 1
  • Wanxia Huang
    • 1
  • Xiaosong Liu
    • 1
  • Youli Hong
    • 1
  • Gun Gao
    • 3
  • Xin Ge
    • 3
  • Hongzhang Zhou
    • 2
  • Ziyu Wu
    • 1
    • 3
  1. 1.Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of the Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
  3. 3.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations