Advertisement

Analytical and Bioanalytical Chemistry

, Volume 398, Issue 4, pp 1565–1573 | Cite as

Mesoporous materials in sensing: morphology and functionality at the meso-interface

  • Brian J. Melde
  • Brandy J. JohnsonEmail author
Review

Abstract

Mesoporous materials are finding increasing utility in sensing applications. These applications can benefit from a surface area that may exceed 1,000 m2 g−1 and fast diffusion of analytes through a porous structure. This article reviews recent developments in mesoporous materials-based sensing and provides examples of the impact of different surface functionality, pore structure, and macro-morphology in an attempt to illustrate the contribution of these factors to the selectivity and sensitivity of a sensor response. The materials discussed include ordered mesoporous silicates synthesized with surfactants, hard templated ordered mesoporous carbons, and metal oxides with porous textures which have been applied to advantage in various detection schemes. Chemical functionalization of mesoporous materials through silane grafting, co-condensation, and adsorption are also addressed.

Figure

In mesoporous materials, morphological factors and functionality combine to produce unique characteristics

Keywords

Mesopore Micropore Morphology Surfactant-template Imprint Metal oxide 

Notes

Acknowledgements

This research was sponsored by the US Defense Threat Reduction Agency (DTRA; BA08PRO015) and the US DoD Strategic Environmental Research and Development Program (SERDP; ER-1604). The views expressed here are those of the authors and do not represent those of the US Navy, the US Department of Defense, or the US Government.

References

  1. 1.
    Carrington NA, Xue ZL (2007) Acc Chem Res 40:343–350CrossRefGoogle Scholar
  2. 2.
    Martínez-Máñez R, Sancenón F (2006) Coord Chem Rev 250:3081–3093CrossRefGoogle Scholar
  3. 3.
    Ariga K, Vinu A, Hill JP, Mori T (2007) Coord Chem Rev 251:2562–2591CrossRefGoogle Scholar
  4. 4.
    Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Chem Soc Rev 36:993–1017CrossRefGoogle Scholar
  5. 5.
    Slowing II, Trewyn BG, Giri S, Lin VS-Y (2007) Adv Funct Mater 17:1225–1236CrossRefGoogle Scholar
  6. 6.
    Trewyn BG, Giri S, Slowing II, Lin VS-Y (2007) Chem Commun 3236–3245Google Scholar
  7. 7.
    Tiemann M (2007) Chem Eur J 13:8376–8388CrossRefGoogle Scholar
  8. 8.
    Walcarius A (2008) Electroanalysis 20:711–738CrossRefGoogle Scholar
  9. 9.
    Walcarius A, Kuhn A (2008) Trends Anal Chem 27:593–603CrossRefGoogle Scholar
  10. 10.
    Melde BJ, Johnson BJ, Charles PT (2008) Sensors 8:5202–5228CrossRefGoogle Scholar
  11. 11.
    Asefa T, Duncan CT, Sharma KK (2009) Analyst 134:1980–1990CrossRefGoogle Scholar
  12. 12.
    Walcarius A, Collinson MM (2009) Annual Rev Anal Chem 2:121–143CrossRefGoogle Scholar
  13. 13.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712CrossRefGoogle Scholar
  14. 14.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  15. 15.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  16. 16.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036CrossRefGoogle Scholar
  17. 17.
    Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743–7746CrossRefGoogle Scholar
  18. 18.
    Attard GS, Glyde JC, Goltner CG (1995) Nature 378:366–368CrossRefGoogle Scholar
  19. 19.
    Melosh NA, Lipic P, Bates FS, Wudl F, Stucky GD, Fredrickson GH, Chmelka BF (1999) Macromolecules 32:4332–4342CrossRefGoogle Scholar
  20. 20.
    Yang H, Kuperman A, Coombs N, Mamiche-Afara S, Ozin GA (1996) Nature 379:703–705CrossRefGoogle Scholar
  21. 21.
    Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI (1997) Nature 389:364–368CrossRefGoogle Scholar
  22. 22.
    Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ (1999) Nature 398:223–226CrossRefGoogle Scholar
  23. 23.
    Schacht S, Huo Q, Voight-Martin IG, Stucky GD, Schüth F (1996) Science 273:768–771CrossRefGoogle Scholar
  24. 24.
    Ji X, Lee KT, Monjauze M, Nazar LF (2008) Chem Commun 4288–4290Google Scholar
  25. 25.
    Walcarius A (2010) Anal Bioanal Chem 396:261–272CrossRefGoogle Scholar
  26. 26.
    Balaji T, El-Safty SA, Matsunaga H, Hanaoka T, Mizukami F (2006) Angew Chem Int Ed 45:7202–7208CrossRefGoogle Scholar
  27. 27.
    El-Safty SA, Ismail AA, Matsunaga H, Mizukami F (2007) Chem Eur J 13:9245–9255CrossRefGoogle Scholar
  28. 28.
    Ismail AA (2008) 2008 317:288–297Google Scholar
  29. 29.
    El-Safty SA, Ismail AA, Matsunaga H, Nanjo H, Mizukami F (2008) J Phys Chem C 112:4825–4834CrossRefGoogle Scholar
  30. 30.
    El-Safty SA, Ismail AA, Matsunaga H, Hanaoka T, Mizukami F (2008) Adv Funct Mater 18:1485–1500CrossRefGoogle Scholar
  31. 31.
    El-Safty SA, Prabhakaran D, Kiyozumi Y, Mizukami F (2008) Adv Funct Mater 18:1739–1750CrossRefGoogle Scholar
  32. 32.
    El-Safty SA (2009) Adsorption 15:227–239CrossRefGoogle Scholar
  33. 33.
    El-Safty SA (2009) J Mater Sci 44:6764–6774CrossRefGoogle Scholar
  34. 34.
    Palomares E, Vilar R, Durrant JR (2004) Chem Commun 362–363Google Scholar
  35. 35.
    Coronado E, Galán-Mascarós JR, Martí-Gastaldo C, Palomares E, Durrant JR, Vilar R, Gratzel M, Nazeeruddin MK (2005) J Am Chem Soc 127:12351–12356CrossRefGoogle Scholar
  36. 36.
    Nazeeruddin MK, Censo DD, Humphry-Baker R, Grätzel M (2006) Adv Funct Mater 16:189–194CrossRefGoogle Scholar
  37. 37.
    Reynal A, Albero J, Vidal-Ferran A, Palomares E (2009) Inorg Chem Commun 12:131–134CrossRefGoogle Scholar
  38. 38.
    Sarkar K, Dhara K, Nandi M, Roy P, Bhaumik A, Banerjee P (2009) Adv Funct Mater 19:223–234CrossRefGoogle Scholar
  39. 39.
    Kim E, Kim HE, Lee SJ, Lee SS, Seo ML, Jung JH (2008) Chem Commun 3921–3923Google Scholar
  40. 40.
    El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F (2007) Adv Funct Mater 17:3731–3745CrossRefGoogle Scholar
  41. 41.
    van Oudenaarden A, Boxer SG (1999) Science 285:1046–1048CrossRefGoogle Scholar
  42. 42.
    Lee MH, Lee SJ, Jung JH, Lim H, Kim JS (2007) Tetrahedron 63:12087–12092CrossRefGoogle Scholar
  43. 43.
    Javanbakht M, Divsar F, Badiei A, Ganjali MR, Norouzi P, Ziarani GM, Chaloosi M, Jahangir AA (2009) Anal Sci 25:789–794CrossRefGoogle Scholar
  44. 44.
    Ros-Lis JV, Casasús R, Comes M, Coll C, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P, Haskouri JE, Garró N, Rurack K (2008) Chem Eur J 14:8267–8278CrossRefGoogle Scholar
  45. 45.
    Gao L, Wang JQ, Huang L, Fan XX, Zhu JH, Wang Y, Zou ZG (2007) Inorg Chem 46:10287–10293CrossRefGoogle Scholar
  46. 46.
    Gao L, Wang Y, Wang J, Huang L, Shi L, Fan X, Zou Z, Yu T, Zhu M, Li Z (2006) Inorg Chem 45:6844–6850CrossRefGoogle Scholar
  47. 47.
    Kledzik K, Orłowska M, Patralska D, Gwiazda M, Jezierska J, Pikus S, Ostaszewski R, Kłonkowski AM (2007) Appl Surf Sci 254:441–451CrossRefGoogle Scholar
  48. 48.
    Wang L, Zhou M, Jing Z, Zhong A (2009) Microchim Acta 165:367–372CrossRefGoogle Scholar
  49. 49.
    Dai S, Burleigh MC, Shin Y, Morrow CC, Barnes CE, Xue Z (1999) Angew Chem Int Ed 38:1235–1239CrossRefGoogle Scholar
  50. 50.
    Fang G-Z, Tan J, Yan X-P (2005) Anal Chem 77:1734–1739CrossRefGoogle Scholar
  51. 51.
    Fan Z (2006) Talanta 70:1164–1169CrossRefGoogle Scholar
  52. 52.
    Descalzo AB, Rurack K, Weisshoff H, Martínez-Máñez R, Marcos MD, Amorós P, Hoffmann K, Soto J (2005) J Am Chem Soc 127:184–200CrossRefGoogle Scholar
  53. 53.
    Comes M, Rodríguez-López G, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P, Beltrán D (2005) Angew Chem Int Ed 44:2918–2922CrossRefGoogle Scholar
  54. 54.
    Comes M, Aznar E, Moragues M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Gil L, Amorós P (2009) Chem Eur J 15:9024–9033CrossRefGoogle Scholar
  55. 55.
    Kim E, Kim HJ, Bae DR, Lee SJ, Cho EJ, Seo MR, Kim JS, Jung JH (2008) New J Chem 32:1003–1007CrossRefGoogle Scholar
  56. 56.
    Seo SM, Cho EJ, Lee SJ, Nam KC, Park S-H, Jung JH (2008) Micropor Mesopor Mater 114:448–454CrossRefGoogle Scholar
  57. 57.
    Palomares E, Vilar R, Green A, Durrant JR (2004) Adv Funct Mater 14:111–115CrossRefGoogle Scholar
  58. 58.
    Comes M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P, Beltrán D (2004) Adv Mater 16:1783–1786CrossRefGoogle Scholar
  59. 59.
    Comes M, Marcos MD, Martínez-Máñez R, Millán MC, Ros-Lis JV, Sancenón F, Soto J, Villaescusa LA (2006) Chem Eur J 12:2162–2170CrossRefGoogle Scholar
  60. 60.
    García-Acosta B, Comes M, Bricks JL, Kudinova MA, Kurdyukov VV, Tolmachev AI, Descalzo AB, Marcos MD, Martínez-Máñez R, Moreno A, Sancenón F, Soto J, Villaescusa LA, Rurack K, Barat JM, Escriche I, Amorós P (2006) Chem Commun 2239–2241Google Scholar
  61. 61.
    Comes M, Marcos MD, Martínez-Máñez R, Sancenón F, Villaescusa LA, Graefe A, Mohr GJ (2008) J Mater Chem 18:5815–5823CrossRefGoogle Scholar
  62. 62.
    Wang F, Yang J, Wu K (2009) Anal Chim Acta 638:23–28CrossRefGoogle Scholar
  63. 63.
    Choi HN, Han JH, Park JA, Lee JM, Lee W-Y (2007) Electroanalysis 19:1757–1763CrossRefGoogle Scholar
  64. 64.
    Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M (2008) Sens Actuators B 135:268–275CrossRefGoogle Scholar
  65. 65.
    Lin D-H, Jiang Y-X, Wang Y, Sun S-G (2008) J Nanomater 2008:1–10Google Scholar
  66. 66.
    Zhou M, Ding J, Guo L-P, Shang Q-K (2007) Anal Chem 79:5328–5335CrossRefGoogle Scholar
  67. 67.
    Ndamanisha JC, Bai J, Qi B, Guo L (2009) Anal Biochem 386:79–84CrossRefGoogle Scholar
  68. 68.
    Hou Y, Ndamanisha JC, Guo L-P, Peng X-J, Bai J (2009) Electrochim Acta 54:6166–6171CrossRefGoogle Scholar
  69. 69.
    Zhou M, Guo L-P, Hou Y, Peng X-J (2008) Electrochim Acta 53:4176–4184CrossRefGoogle Scholar
  70. 70.
    Hu G, Ma Y, Guo Y, Shao S (2009) J Electroanal Chem 633:264–267CrossRefGoogle Scholar
  71. 71.
    Zhu L, Tian C, Zhu D, Yang R (2008) Electroanalysis 20:1128–1134CrossRefGoogle Scholar
  72. 72.
    Yang T-H, Yee CK, Amweg ML, Singh S, Kendall EL, Dattelbaum AM, Shreve AP, Brinker CJ, Parikh AN (2007) Nano Lett 7:2446–2451CrossRefGoogle Scholar
  73. 73.
    Nozawa K, Osono C, Sugawara M (2007) Sens Actuators B 126:632–640CrossRefGoogle Scholar
  74. 74.
    Trammell SA, Zeinali M, Melde BJ, Charles PT, Velez FL, Dinderman MA, Kusterbeck A, Markowitz MA (2008) Anal Chem 80:4627–4633CrossRefGoogle Scholar
  75. 75.
    Johnson-White B, Zeinali M, Shaffer KM, Patterson CHJ, Charles PT, Markowitz MA (2007) Biosens Bioelectron 22:1154–1162CrossRefGoogle Scholar
  76. 76.
    Johnson BJ, Melde BJ, Charles PT, Cardona DC, Dinderman MA, Malanoski AP, Qadri SB (2008) Langmuir 24:9024–9029CrossRefGoogle Scholar
  77. 77.
    Johnson BJ, Melde BJ, Thomas C, Malanoski AP, Leska IA, Charles PT, Parrish DA, Deschamps JR (2010) Sensors 10:2315–2331CrossRefGoogle Scholar
  78. 78.
    Smith CB, Anderson JE, Massaro RD, Tatineni B, Kam KC, Tepper GC (2008) Appl Spectrosc 6:604–610CrossRefGoogle Scholar
  79. 79.
    Li L-L, Sun H, Bai Y-C, Fang C-J, Yan C-H (2009) Chem Eur J 15:4716–4724CrossRefGoogle Scholar
  80. 80.
    Martínez-Ferrero E, Franc G, Mazères S, Turrin C-O, Boissière C, Caminade A-M, Majoral J-P, Sanchez C (2008) Chem Eur J 14:7658–7669CrossRefGoogle Scholar
  81. 81.
    Xiao W, Xiao D (2007) Talanta 72:1288–1292CrossRefGoogle Scholar
  82. 82.
    Vaezi MR, Sadrnezhaad SK (2007) Mater Sci Eng B 140:73–80CrossRefGoogle Scholar
  83. 83.
    Li L-L, Zhang W-M, Yuan Q, Li Z-X, Fang C-J, Sun L-D, Wan L-J, Yan C-H (2008) Cryst Growth Des 8:4165–4172CrossRefGoogle Scholar
  84. 84.
    Ramgir NS, Hwang YK, Jhung SH, Mulla IS, Chang J-S (2006) Sens Actuators B 114:275–282CrossRefGoogle Scholar
  85. 85.
    Ramgir NS, Hwang YK, Jhung SH, Kim H-K, Hwang J-S, Mulla IS, Chang J-S (2006) Appl Surf Sci 252:4298–4305CrossRefGoogle Scholar
  86. 86.
    De G, Köhn R, Xomeritakis G, Brinker CJ (2007) Chem Commun 1840–1842Google Scholar
  87. 87.
    Xu H, Liu X, Cui D, Li M, Jiang M (2006) Sens Actuators B 114:301–307CrossRefGoogle Scholar
  88. 88.
    Benkstein KD, Semancik S (2006) Sens Actuators B 113:445–453CrossRefGoogle Scholar
  89. 89.
    Chu D, Zeng Y-P, Jiang D, Masuda Y (2009) Sens Actuators B 137:630–636CrossRefGoogle Scholar
  90. 90.
    Li E, Cheng Z, Xu J, Pan Q, Yu W, Chu Y (2009) Cryst Growth Des 9:2146–2151CrossRefGoogle Scholar
  91. 91.
    Chen H, Zhao Y, Yang M, He J, Chu PK, Zhang J, Wu S (2010) Anal Chim Acta 659:266–273CrossRefGoogle Scholar
  92. 92.
    Ji Q, Yoon SB, Hill JP, Vinu A, Yu J-S, Ariga K (2009) J Am Chem Soc 131:4220–4221CrossRefGoogle Scholar
  93. 93.
    Palaniappan A, Li X, Tay FEH, Li J, Su X (2006) Sens Actuators B 119:220–226CrossRefGoogle Scholar
  94. 94.
    Palaniappan A, Su X, Tay FEH (2006) IEEE Sens J 6:1676–1682CrossRefGoogle Scholar
  95. 95.
    Palaniappan A, Moochhala S, Tay FEH, Su X, Phua NCL (2008) Sens Actuators B 129:184–187CrossRefGoogle Scholar
  96. 96.
    Palaniappan A, Moochhala S, Tay FEH, Phua NCL, Su X (2008) Sens Actuators B 133:241–243CrossRefGoogle Scholar
  97. 97.
    Jansat S, Pelzer K, García-Antón J, Raucoules R, Philippot K, Maisonnat A, Chaudret B, Guari Y, Mehdi A, Reyé C, Corriu RJP (2007) Adv Funct Mater 17:3339–3347CrossRefGoogle Scholar
  98. 98.
    Banet P, Legagneux L, Hesemann P, Moreau JJE, Nicole L, Quach A, Sanchez C, Tran-Thi T-H (2008) Sens Actuators B 130:1–8CrossRefGoogle Scholar
  99. 99.
    Yuliarto B, Kumai Y, Inagaki S, Zhou H (2009) Sens Actuators B 138:417–421CrossRefGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  1. 1.Center for Bio/Molecular Science and EngineeringNaval Research LaboratoryWashingtonUSA

Personalised recommendations