Analytical and Bioanalytical Chemistry

, Volume 397, Issue 4, pp 1503–1510 | Cite as

Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations

  • Christoph Haisch
  • Karin Eilert-Zell
  • Mika M. Vogel
  • Peter Menzenbach
  • Reinhard Niessner
Original Paper


In this paper, we present the OPUS (optoacoustic plus ultrasound) system, which is a combination of a wavelength-tunable pulsed optical parametrical oscillator (OPO) laser with a commercial ultrasound (US) scanner. Optoacoustic (OA) or, synonymously, photoacoustic (PA) imaging is a spectroscopic technique to measure optical absorption in semitransparent solids and liquids. The measured signal is an acoustical pressure wave, which represents the absorption of pulsed optical radiation. By temporally and spatially resolved detection of the pressure wave on the sample surface, a 2D or even 3D image of the distribution of the optical absorption in the sample can be generated. In recent years, OA tomography has found increasing application in medical imaging. Most of these applications are based on qualitative OA imaging. The reported system is intended primarily for breast cancer detection, in which the optoacoustic imaging modality offers additional information to the ultrasound image. Consequently, the system is developed in a way that the OA imaging mode can be installed without major changes to the US instrument. The capabilities of the OPUS system for the quantitative analysis of absorber concentrations in tissue models are exploited.


Photoacoustic Medical imaging Quantitative information Ultrasound 


  1. 1.
    Karabutov AA, Podymova BN, Letokhov SV (1996) Time-resolved laser optoacoustic tomography of inhomogeneous media. Appl Phys B: Lasers Opt 63:545–563CrossRefGoogle Scholar
  2. 2.
    Gusev EV, Karabutov AA (1991) Laser optoacoustics. AIP, New YorkGoogle Scholar
  3. 3.
    Rosencwaig A (1973) Photoacoustic spectroscopy of biological materials. Science 181:657–658CrossRefGoogle Scholar
  4. 4.
    Xu M, Wang VL (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77:041101/1-/22Google Scholar
  5. 5.
    Ermilov AS, Khamapirad T, Conjusteau A, Leonard HM, Lacewell R, Mehta K, Miller T, Oraevsky AA (2009) Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt 14:-Google Scholar
  6. 6.
    Lu W, Huang Q, Ku G, Wen X, Zhou M, Guzatov D, Brecht P, Su R, Oraevsky A, Wang VL, Li C (2010) Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31:2617–2626CrossRefGoogle Scholar
  7. 7.
    Haisch C (2009) Quantitative analysis in medicine using photoacoustic tomography. Anal Bioanal Chem 393:473–479CrossRefGoogle Scholar
  8. 8.
    Haisch C, Hoffmann L, Niessner R (2006) Design and characterization of a highly directional photoacoustic sensor probe. Proc SPIE 6086:60860E/1-E/1Google Scholar
  9. 9.
    Kolkman MRG, Hondebrink E, Steenbergen W, de Mul MFF (2003) In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor. IEEE J Sel Top Quantum Electron 9:343–346CrossRefGoogle Scholar
  10. 10.
    Oberheide U, Bruder I, Welling H, Ertmer W, Lubatschowski H (2003) Optoacoustic imaging for optimization of laser cyclophotocoagulation. J Biomed Opt 8:281–287CrossRefGoogle Scholar
  11. 11.
    Manohar S, Willemink HRG, van de Heijden F, Slump HC, van Leeuwen GT (2007) Concomitant speed-of-sound tomography in photoacoustic imaging. Appl Phys Lett 91:131911/1-/3CrossRefGoogle Scholar
  12. 12.
    Manohar S, Kharine A, van Hespen JGC, Steenbergen W, van Leeuwen TG (2005) The Twente Photoacoustic Mammoscope: system overview and performance. Phys Med Biol 50:2543–2557CrossRefGoogle Scholar
  13. 13.
    Paltauf G, Nuster R, Haltmeier M, Burgholzer P (2007) Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector. Appl Opt 46:3352–3358CrossRefGoogle Scholar
  14. 14.
    Nuster R, Paltauf G, Burgholzer P (2007) Comparison of surface plasmon resonance devices for acoustic wave detection in liquid. Opt Express 15:6087–6095CrossRefGoogle Scholar
  15. 15.
    Zhang E, Laufer J, Beard P (2008) Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl Opt 47:561–577CrossRefGoogle Scholar
  16. 16.
    Wang X, Xie X, Ku G, Wang VL, Stoica G (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Opt 11:024015CrossRefGoogle Scholar
  17. 17.
    Jaeger M, Schupbach S, Gertsch A, Kitz M, Frenz M (2007) Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation. Inverse Probl 23:S51–S63CrossRefGoogle Scholar
  18. 18.
    Niederhauser JJ, Jaeger M, Lemor R, Weber P, Frenz M (2005) Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans Med Imag 24:436–440CrossRefGoogle Scholar
  19. 19.
    Karpiouk BA, Wang B, Emelianov YS (2010) Development of a catheter for combined intravascular ultrasound and photoacoustic imaging. Rev Sci Instrum 81:014901CrossRefGoogle Scholar
  20. 20.
    Sperl JI, Zell K, Menzenbach P, Haisch C, Ketzer S, Marquart M, Koenig H, Vogel WM (2007) Photoacoustic image reconstruction: a quantitative analysis. Proc SPIE 6631:663103/1-/12Google Scholar
  21. 21.
    Kharine A, Manohar S, Seeton R, Kolkman MRG, Bolt AR, Steenbergen W, de Mul MFF (2003) Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography. Phys Med Biol 48:357–370CrossRefGoogle Scholar
  22. 22.
    Zell K, Sperl JI, Vogel WM, Niessner R, Haisch C (2007) Acoustical properties of selected tissue phantom materials for ultrasound imaging. Phys Med Biol 52:N475–N484CrossRefGoogle Scholar
  23. 23.
    van de Louw A, Cracco C, Cerf C, Harf A, Duvaldestin P, Lemaire F, Brochard L (2001) Accuracy of pulse oximetry in the intensive care unit. Intensive Care Med 27:1606–1613CrossRefGoogle Scholar
  24. 24.
    Laufer J, Elwell C, Delpy D, Beard P (2005) In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution. Phys Med Biol 50:4409–4428CrossRefGoogle Scholar
  25. 25.
    Laufer J, Delpy D, Elwell C, Beard P (2007) Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration. Phys Med Biol 52:141–168CrossRefGoogle Scholar
  26. 26.
    Song L, Kim C, Maslov K, Shung KK, Wang VL (2009) High-speed dynamic 3D photoacoustic imaging of sentinel lymph node in a murine model using an ultrasound array. Med Phys 36:3724–3729CrossRefGoogle Scholar
  27. 27.
    Song HK, Kim HC, Cobley MC, Xia NY, Wang VL (2009) Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 9:183–188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christoph Haisch
    • 1
  • Karin Eilert-Zell
    • 1
  • Mika M. Vogel
    • 2
  • Peter Menzenbach
    • 3
  • Reinhard Niessner
    • 1
  1. 1.Department of Analytical ChemistryTechnische Universität MünchenMunichGermany
  2. 2.GE Global Research-EuropeGarching b. MünchenGermany
  3. 3.InnoLas GmbHKraillingGermany

Personalised recommendations