Analytical and Bioanalytical Chemistry

, Volume 397, Issue 3, pp 1009–1017 | Cite as

Chemical sensing and imaging with pulsed terahertz radiation

  • Markus WaltherEmail author
  • Bernd M. Fischer
  • Alex Ortner
  • Andreas Bitzer
  • Andreas Thoman
  • Hanspeter Helm


Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectrometers for this interesting part of the electromagnetic spectrum, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Although early proof-of-principle demonstrations have shown the great potential of terahertz spectroscopy for sensing and imaging, the technology still often lacks the required sensitivity and suffers from its intrinsically poor spatial resolution. In this review we discuss the current potential of terahertz pulse spectroscopy and highlight recent technological advances geared towards both enhancing spectral sensitivity and increasing spatial resolution.

Online abstract figure

Artist's view of a terahertz pulse emitted from a photoconductive antenna probing the vibrational modes of a sugar molecule.


Terahertz spectroscopy Terahertz imaging Lab-on-chip 



M.W. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) through grant no. WA 2641, by the Baden-Württemberg Ministry for Science and Arts Research Seed Capital (RiSC) for young researchers, and by the University of Freiburg.


  1. 1.
    Walther M, Plochocka P, Fischer B, Helm H, Jepsen PU (2002) Biopolymers 67:310–313CrossRefGoogle Scholar
  2. 2.
    Melinger JS, Harsha SS, Laman N, Grischkowsky D (2009) J Opt Soc Am B 26:A79–A89CrossRefGoogle Scholar
  3. 3.
    Hunsche S, Koch M, Brener I, Nuss MC (1998) Opt Commun 150:22–26CrossRefGoogle Scholar
  4. 4.
    Jördens C, Scheller M, Breitenstein B, Selmar D, Koch M (2009) J Biol Phys 35:255–264CrossRefGoogle Scholar
  5. 5.
    Melinger JS, Laman N, Grischkowsky D (2008) Appl Phys Lett 93:011102CrossRefGoogle Scholar
  6. 6.
    Brown ER, Bjarnason JE, Chan TLJ, Lee AWM, Celis MA (2004) Appl Phys Lett 84:3438–3440CrossRefGoogle Scholar
  7. 7.
    Fischer BM, Hoffmann M, Helm H, Wilk R, Rutz F, Kleine-Ostmann T, Koch M, Jepsen PU (2005) Opt Express 13:5205–5215CrossRefGoogle Scholar
  8. 8.
    Markelz AG, Roitberg A, Heilweil EJ (2000) Chem Phys Lett 320:42–48CrossRefGoogle Scholar
  9. 9.
    Markelz AG, Knab JR, Chen JY, He YF (2007) Chem Phys Lett 442:413–417CrossRefGoogle Scholar
  10. 10.
    Fischer BM, Walther M, Jepsen PU (2002) Phys Med Biol 47:3807–3814CrossRefGoogle Scholar
  11. 11.
    Woodward RM, Wallace VP, Arnone DD, Linfield EH, Pepper M (2003) J Biol Phys 29:257–261CrossRefGoogle Scholar
  12. 12.
    Jepsen PU, Clark SJ (2007) Chem Phys Lett 442:275–280CrossRefGoogle Scholar
  13. 13.
    Allis DG, Fedor AM, Korter TM, Bjarnason JE, Brown ER (2007) Chem Phys Lett 440:203–209CrossRefGoogle Scholar
  14. 14.
    Auston DH, Cheung KP, Smith PR (1984) Appl Phys Lett 45:284–286CrossRefGoogle Scholar
  15. 15.
    Grischkowsky D, Keiding S, Vanexter M, Fattinger C (1990) J Opt Soc Am B 7:2006–2015CrossRefGoogle Scholar
  16. 16.
    Winnewisser C, Jepsen PU, Schall M, Schyja V, Helm H (1997) Appl Phys Lett 70:3069–3071CrossRefGoogle Scholar
  17. 17.
    Wu Q, Zhang XC (1997) Appl Phys Lett 71:1285–1286CrossRefGoogle Scholar
  18. 18.
    Franz M, Fischer BM, Walther M (2008) Appl Phys Lett 92:021107CrossRefGoogle Scholar
  19. 19.
    Walther M, Fischer BM, Jepsen PU (2003) Chem Phys 288:261–268CrossRefGoogle Scholar
  20. 20.
    Jepsen PU, Moller U, Merbold H (2007) Opt Express 15:14717–14737CrossRefGoogle Scholar
  21. 21.
    Jepsen PU, Jensen JK, Moller U (2008) Opt Express 16:9318–9331CrossRefGoogle Scholar
  22. 22.
    Hunger J, Stoppa A, Thoman A, Walther M, Buchner R (2009) Chem Phys Lett 471:85–91CrossRefGoogle Scholar
  23. 23.
    Yada H, Nagai M, Tanaka K (2008) Chem Phys Lett 464:166–170CrossRefGoogle Scholar
  24. 24.
    Fischer BM, Helm H, Jepsen PU (2007) Proc IEEE 95:1592–1604CrossRefGoogle Scholar
  25. 25.
    Yamaguchi M, Miyamaru F, Yamamoto K, Tani M, Hangyo M (2005) Appl Phys Lett 86:053903CrossRefGoogle Scholar
  26. 26.
    Gervasio FL, Cardini G, Salvi PR, Schettino V (1998) J Phys Chem A 102:2131–2136CrossRefGoogle Scholar
  27. 27.
    Walther M, Fischer B, Schall M, Helm H, Jepsen PU (2000) Chem Phys Lett 332:389–395CrossRefGoogle Scholar
  28. 28.
    Nielsen K, Rasmussen HK, Adam AJL, Planken PCM, Bang O, Jepsen PU (2009) Opt Express 17:8592–8601CrossRefGoogle Scholar
  29. 29.
    Atakaramians S, Shahraam AV, Fischer BM, Abbott D, Monro TM (2008) Opt Express 16:8845–8854CrossRefGoogle Scholar
  30. 30.
    Laman N, Harsha SS, Grischkowsky D, Melinger JS (2008) Opt Express 16:4094–4105CrossRefGoogle Scholar
  31. 31.
    Laman N, Harsha SS, Grischkowsky D (2008) Appl Spectrosc 62:319–326CrossRefGoogle Scholar
  32. 32.
    Laman N, Harsha SS, Grischkowsky D, Melinger JS (2008) Biophys J 94:1010–1020CrossRefGoogle Scholar
  33. 33.
    Zhang JQ, Grischkowsky D (2004) Opt Lett 29:1617–1619CrossRefGoogle Scholar
  34. 34.
    Walther M, Freeman MR, Hegmann FM (2005) Appl Phys Lett 87:261107CrossRefGoogle Scholar
  35. 35.
    Wang KL, Mittleman DM (2004) Nature 432:376–379CrossRefGoogle Scholar
  36. 36.
    Byrne MB, Cunningham J, Tych K, Burnett AD, Stringer MR, Wood CD, Dazhang L, Lachab M, Linfield EH, Davies AG (2008) Appl Phys Lett 93:182904CrossRefGoogle Scholar
  37. 37.
    Fischer B, Hoffmann M, Helm H, Modjesch G, Jepsen PU (2005) Semicond Sci Technol 20:S246–S253CrossRefGoogle Scholar
  38. 38.
    Chen Q, Jiang ZP, Xu GX, Zhang XC (2000) Opt Lett 25:1122–1124CrossRefGoogle Scholar
  39. 39.
    Chen HT, Kersting R, Cho GC (2003) Appl Phys Lett 83:3009–3011CrossRefGoogle Scholar
  40. 40.
    van der Valk NCJ, Planken PCM (2002) Appl Phys Lett 81:1558–1560CrossRefGoogle Scholar
  41. 41.
    Bitzer A, Ortner A, Walther M (2010) Appl Opt 49:E1–E6Google Scholar
  42. 42.
    Mitrofanov O, Brener I, Harel R, Wynn JD, Pfeiffer LN, West KW, Federici J (2000) Appl Phys Lett 77:3496–3498CrossRefGoogle Scholar
  43. 43.
    Seo MA, Adam AJL, Kang JH, Lee JW, Jeoung SC, Park QH, Planken PCM, Kim DS (2007) Opt Express 15:11781–11789CrossRefGoogle Scholar
  44. 44.
    Bitzer A, Merbold H, Thoman A, Feurer T, Helm H, Walther M (2009) Opt Express 17:3826–3834CrossRefGoogle Scholar
  45. 45.
    Mittleman DM, Jacobsen RH, Nuss MC (1996) IEEE J Sel Top Quantum Electron 2:679–692CrossRefGoogle Scholar
  46. 46.
    Scheller M, Koch M (2009) Opt Express 17:17723–17733CrossRefGoogle Scholar
  47. 47.
    Huber AJ, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R (2008) Nano Lett 8:3766–3770CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Markus Walther
    • 1
    Email author
  • Bernd M. Fischer
    • 2
    • 3
  • Alex Ortner
    • 1
  • Andreas Bitzer
    • 1
  • Andreas Thoman
    • 1
  • Hanspeter Helm
    • 1
  1. 1.Freiburg Materials Research CenterUniversity of FreiburgFreiburgGermany
  2. 2.French-German Research Institute of Saint LouisSaint Louis CedexFrance
  3. 3.University of Adelaide,School of Electrical and Electronic EngineeringAdelaideAustralia

Personalised recommendations