Analytical and Bioanalytical Chemistry

, Volume 397, Issue 6, pp 2199–2210 | Cite as

Determination of isoascorbic acid in fish tissue by hydrophilic interaction liquid chromatography–ultraviolet detection

  • Spyros Drivelos
  • Marilena E. Dasenaki
  • Nikolaos S. Thomaidis
Original Paper


A new hydrophilic interaction liquid chromatographic (HILIC) method for the simultaneous determination of isoascorbic (IAA) and ascorbic acid (AA) was developed. The separation of IAA and AA was studied in various HILIC stationary phases and the influence of the composition of the mobile phase, the ionic strength and the column temperature to the chromatographic characteristics is presented. The final method used an aminopropyl column under isocratic elution with acetonitrile–100 mM ammonium acetate solution (90:10, v/v) at a flow rate of 0.4 mL/min and a detection wavelength of 240 nm. This method was validated and the calibration curves were found to be linear in the range of 1.0–65 μg/mL for both IAA and AA. The method limit of detection for IAA determination in fish tissue was 2.3 μg/g. Inter-day precision (as %RSDR) was ranged between 0.56% and 8.3% at three concentration levels, whereas the respected recoveries ranged between 82% and 98%. This method was applied to the determination of IAA (as additive E315) in frozen redfish samples. The hyphenation of the HILIC separation with a tandem mass spectrometer was also studied and the problems encountered with negative electrospray ionization under HILIC separation conditions are discussed.


A new HILIC-UV method has been developed for the determination of isoascorbic acid in frozen redfish tissues


HILIC MS/MS Erythorbic acid Ascorbic acid Food E315 Isoascorbic acid 

Supplementary material

216_2010_3665_MOESM1_ESM.pdf (686 kb)
ESM 1 (PDF 686 kb)


  1. 1.
    Versari A, Mattioli A, Parpinello GP, Galassi S (2004) Food Control 15:355–358CrossRefGoogle Scholar
  2. 2.
    Nováková L, Solichová D, Solich P (2008) Trends Anal Chem 27:942–958CrossRefGoogle Scholar
  3. 3.
    Kall MA, Andersen C (1999) J Chromatogr B 730:101–111CrossRefGoogle Scholar
  4. 4.
    Benlloch R, Farre R, Frigola A (1993) J Liq Chromatogr 16:3113–3122CrossRefGoogle Scholar
  5. 5.
    Schreiber J, Lohmann W, Unverzagt D, Otten A (1986) J Anal Chem 325:5Google Scholar
  6. 6.
    Margolis SA, Schapira RM (1997) J Chromatogr B 690:25–33CrossRefGoogle Scholar
  7. 7.
    Alpert A (1990) J Chromatogr A 499:177–196CrossRefGoogle Scholar
  8. 8.
    Nováková L, Solichová D, Pavlovičová S, Solich P (2008) J Sep Sci 31:1634–1644CrossRefGoogle Scholar
  9. 9.
    Nováková L, Solichová D, Solich P (2009) J Chromatogr A 1216:4574–4581CrossRefGoogle Scholar
  10. 10.
    Karatapanis AE, Fiamegos YC, Stalikas CD (2009) J Sep Sci 32:909–917CrossRefGoogle Scholar
  11. 11.
    Bui-Nguyên MH (1980) J Chromatogr 196:163–165CrossRefGoogle Scholar
  12. 12.
    Doner LW, Hicks KB (1981) Anal Biochem 115:225–230CrossRefGoogle Scholar
  13. 13.
    Tai A, Gohda E (2007) J Chromatogr B 853:214–220CrossRefGoogle Scholar
  14. 14.
    Hao Z, Xiao B, Weng N (2008) J Sep Sci 31:1449–1464CrossRefGoogle Scholar
  15. 15.
    Grumbach ES, Diehl DM, Nue UD (2008) J Sep Sci 31:1511–1518CrossRefGoogle Scholar
  16. 16.
    Nguyen HP, Schug KA (2008) J Sep Sci 31:1465–1480CrossRefGoogle Scholar
  17. 17.
    Liu M, Chen EX, Ji R, Semin D (2008) J Chromatogr A 1188:255–263CrossRefGoogle Scholar
  18. 18.
    McCalley DV (2007) J Chromatogr A 1171:46–55CrossRefGoogle Scholar
  19. 19.
    Yoshida T (2004) J Biochem Biophys Methods 60:265–280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Spyros Drivelos
    • 1
  • Marilena E. Dasenaki
    • 1
  • Nikolaos S. Thomaidis
    • 1
  1. 1.Laboratory of Analytical Chemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations