Analytical and Bioanalytical Chemistry

, Volume 397, Issue 4, pp 1627–1633

Trace determination of triclosan and triclocarban in environmental water samples with ionic liquid dispersive liquid-phase microextraction prior to HPLC–ESI-MS–MS

  • Ru-Song Zhao
  • Xia Wang
  • Jing Sun
  • Shan-Shan Wang
  • Jin-Peng Yuan
  • Xi-Kui Wang
Original Paper


A novel and environmentally friendly microextraction method, termed ionic liquid dispersive liquid-phase microextraction (IL-DLPME), has been developed for rapid enrichment of triclosan and triclocarban before analysis by high-performance liquid phase chromatography–electrospray tandem mass spectrometry (HPLC–ESI-MS–MS). Instead of using toxic organic solvents, an ionic liquid was used as a green extraction solvent. This also avoided the instability of the suspending drop in single-drop liquid-phase microextraction, and the heating and cooling step in temperature-controlled ionic liquid dispersive liquid phase microextraction. Factors that may affect the enrichment efficiency, for example volume of ionic liquid, type and volume of dispersive solvent, pH, extraction time, and NaCl content were investigated in detail and optimized. Under optimum conditions, linearity of the method was observed over the range 0.2–12 μg L−1 for triclocarban and 1–60 μg L−1 for triclosan with correlation coefficients ranging from 0.9980 to 0.9990, respectively. The sensitivity of the proposed method was found to be excellent, with limits of detection in the range 0.040–0.58 μg L−1 and precision in the range 7.0–8.8% (RSD, n = 5). This method has been successfully used to analyze real environmental water samples and satisfactory results were achieved. Average recoveries of spiked compounds were in the range 70.0–103.5%. All these results indicated that the developed method would be a green method for rapid determination of triclosan and triclocarban at trace levels in environmental water samples.


Triclosan Triclocarban Ionic liquid dispersive liquid phase microextraction High performance liquid phase chromatography–electrospray tandem mass spectrometry 


  1. 1.
    Daughton CG, Ternes TA (1999) Environ Health Perspect 107:907–938CrossRefGoogle Scholar
  2. 2.
    Chu SG, Metcalfe CD (2007) J Chromatogr A 1164:212–218CrossRefGoogle Scholar
  3. 3.
    Cha J, Cupples AM (2009) Water research 43:2522–2530CrossRefGoogle Scholar
  4. 4.
    Miller TR, Heidler J, Chillrud SN, Delaquil A, Ritchie JC, Mihalic JN, Bopp R, Halden RU (2008) Environ Sci Technol 42:4570–4576CrossRefGoogle Scholar
  5. 5.
    TSCA (2003) Chemical substances inventory. U.S. Environmental Protection Agency, Washington, D.CGoogle Scholar
  6. 6.
    Heidler J, Sapkota A, Halden RU (2006) Environ Sci Technol 40:3634–3639CrossRefGoogle Scholar
  7. 7.
    Sapkota A, Heidler J, Halden RU (2007) Environ Research 103:21–29CrossRefGoogle Scholar
  8. 8.
    Coogan MA, Edziyie RE, La Point TW, Venables BJ (2007) Chemosphere 67:1911–1918CrossRefGoogle Scholar
  9. 9.
    Halden RU, Paull DH (2004) Environ Sci Technol 38:4849–4855CrossRefGoogle Scholar
  10. 10.
    Halden RU, Paull DH (2005) Environ Sci Technol 39:1420–1426CrossRefGoogle Scholar
  11. 11.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  12. 12.
    Lindstrom A, Buerge IJ, Poiger T, Bergqvist PA, Muller MD, Buser HR (2002) Environ Sci Technol 36:2322–2329CrossRefGoogle Scholar
  13. 13.
    Young TA, Heidler J, Matos-Perez CR, Sapkota A, Toler T, Gibson KE, Schwab KJ, Halden RU (2008) Environ Sci Technol 42:3335–3340CrossRefGoogle Scholar
  14. 14.
    Lores M, Llompart M, Sanchez-Prado L, Garcia-Jares C, Cela R (2005) Anal Bioanal Chem 381:1294–1298CrossRefGoogle Scholar
  15. 15.
    Coogan MA, La Point TW (2008) Environ Sci Technol 27:1788–1793Google Scholar
  16. 16.
    Yang LH, Ying GG, Su HC, Stauber JL, Adams MS, Binet MT (2008) Environ Toxicol Chem 27:1201–1208CrossRefGoogle Scholar
  17. 17.
    Ahn KC, Zhao B, Chen J, Cherednichenko G, Sanmarti E, Denison MS, Lasley B, Pessah IN, Kultz D, Chang DPY, Gee SJ, Hammock BD (2008) Environ Health Perspect 116:1203–1210CrossRefGoogle Scholar
  18. 18.
    Chen JG, Ahn KC, Gee NA, Ahmed MI, Duleba AJ, Zhao L, Gee SJ, Hammock BD, Lasley BL (2008) Endocrinology 149:1173–1179CrossRefGoogle Scholar
  19. 19.
    Aranami K, Readman JW (2007) Chemosphere 66:1052–1056CrossRefGoogle Scholar
  20. 20.
    Chhabra RS, Huff JE, Haseman JK, Elwell MR, Peters AC (1991) Food Chem Toxicol 29:119–124CrossRefGoogle Scholar
  21. 21.
    Gledhill WE (1975) Water Res 9:649–654CrossRefGoogle Scholar
  22. 22.
    Heath RJ, Li J, Roland GE, Rock CO (2000) J Biol Chem 275:4654–4659CrossRefGoogle Scholar
  23. 23.
    Heath RJ, Yu YT, Shapiro MA, Olson E, Rock CO (1998) J Biol Chem 273:30316–30320CrossRefGoogle Scholar
  24. 24.
    Heath RJ, Rubin JR, Holland DR, Zhang EL, Snow ME, Rock CO (1999) J Biol Chem 274:11110–11114CrossRefGoogle Scholar
  25. 25.
    Hoang TT, Schweizer HP (1999) J Bacteriol 181:5489–5497Google Scholar
  26. 26.
    McMurry LM, Oethinger M, Levy SB (1998) Nature 394:531–532CrossRefGoogle Scholar
  27. 27.
    McMurry LM, Oethinger M, Levy SB (1998) FEMS Microbiol Lett 166:305–309CrossRefGoogle Scholar
  28. 28.
    Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Water Res 37:3145–3154CrossRefGoogle Scholar
  29. 29.
    Mats A, Michael SM, Gunilla SE, Margaretha AE (2006) Anal Chem 78:6542–6546CrossRefGoogle Scholar
  30. 30.
    Boyd GR, Reemtsma H, Grimm DA, Mitra S (2003) Sci Total Environ 311:135–149CrossRefGoogle Scholar
  31. 31.
    Lindström A, Buerge IJ, Poiger T, Bergqvist P, Müller M, Buser HR (2002) Environ Sci Technol 36:2322–2329CrossRefGoogle Scholar
  32. 32.
    Berijani S, Assadi Y, Anbia M, Milani-Hosseini MR, Aghaee E (2006) J Chromatogr A 1123:1CrossRefGoogle Scholar
  33. 33.
    Rezaee M, Assadi Y, Milani-Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1CrossRefGoogle Scholar
  34. 34.
    Li YY, Wei GH, Hu J, Liu XJ, Zhao XN, Wang XD (2008) Anal Chim Acta 615:96CrossRefGoogle Scholar
  35. 35.
    Zhao RS, Diao CP, Wang X, Jiang T, Yuan JP (2008) Anal Bioanal Chem 391:2915–2921CrossRefGoogle Scholar
  36. 36.
    Wang X, Diao CP, Zhao RS (2009) J Sep Sci 32:154–159CrossRefGoogle Scholar
  37. 37.
    Poole C F, Poole S K (2010) J Chromatogr A, in pressGoogle Scholar
  38. 38.
    Branco LC, Crespo JG, Afonso CAM (2002) Angew Chem Int Ed 41:2771–2773CrossRefGoogle Scholar
  39. 39.
    Matsumoto M, Mochiduki K, Fukunishi K, Kondo K (2004) Sep Purif Technol 40:97–101CrossRefGoogle Scholar
  40. 40.
    Liu JF, Jiang GB, Chi YG, Cai YQ, Zhou QX, Hu JT (2003) Anal Chem 75:5870–5876CrossRefGoogle Scholar
  41. 41.
    Liu J, Peng J, Chi Y, Jiang G (2005) Talanta 65:705–709CrossRefGoogle Scholar
  42. 42.
    Bai H, Zhou Q, Xie G, Xiao J (2009) Anal Chim Acta 651:64–68CrossRefGoogle Scholar
  43. 43.
    Zhou Q, Bai H, Xie G, Xiao J (2008) J Chromatogr A 1177:43–49CrossRefGoogle Scholar
  44. 44.
    Canosa P, Pérez-Palacios D, Garrido-López A, Tena MT, Rodríguez I, Rubí E, Cela R (2007) J Chromatogr A 1161:105–112CrossRefGoogle Scholar
  45. 45.
    Silva ARM, Nogueira JMF (2008) Talanta 74:1498–1504CrossRefGoogle Scholar
  46. 46.
    Zhao RS, Yuan JP, Li HF, Wang X, Jiang T, Lin JM (2007) Anal Bioanal Chem 387:2911–2915CrossRefGoogle Scholar
  47. 47.
    Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) J Chromatogr A 1216:885–891CrossRefGoogle Scholar
  48. 48.
    Zhao Rs, Lao Wj, Xu Xb (2004) Talanta 62:751–756CrossRefGoogle Scholar
  49. 49.
    Shen G, Lee HK (2002) Anal Chem 74:648–654CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ru-Song Zhao
    • 1
  • Xia Wang
    • 1
  • Jing Sun
    • 2
  • Shan-Shan Wang
    • 1
  • Jin-Peng Yuan
    • 1
  • Xi-Kui Wang
    • 2
  1. 1.Analysis and Test CenterShandong Academy of SciencesJinanChina
  2. 2.Shandong Institute of light industryJinanChina

Personalised recommendations