Analytical and Bioanalytical Chemistry

, Volume 398, Issue 1, pp 181–191

Fluorescent cell-based sensing approaches for toxicity testing



Fluorimetric cell-based sensing methods have attracted increasing interest in toxicity testing of pharmaceuticals, pathogens, environmental pollutants, and other chemicals. The objective of this review is to summarise the variety of approaches reported up to now and to present recent developments in this area. The different approaches are described in relation to their underlying mechanism and, especially, to the role of the fluorophore involved. The methods discussed include the use of fluorescent or fluorogenic indicators, fluorescence-based testing for membrane integrity, approaches based on fluorescence labelling, inducible fluorescent protein expression, and analysis of cellular autofluorescence. Several of these approaches have been shown to be advantageous in comparison with non-fluorescence methods and have potential in high-throughput screening, for example in drug discovery and safety pharmacology.


Fluorescence Cytotoxicity Alternative methods In-vitro testing In-vitro assays 


  1. 1.
    Moczko E, Meglinski IV, Bessant C et al (2009) Dyes assay for measuring physicochemical parameters. Anal Chem 81:2311–2316CrossRefGoogle Scholar
  2. 2.
    Fritzsche M, Fredriksson JM, Carlsson M, Mandenius CF (2009) A cell-based sensor system for toxicity testing using multiwavelength fluorescence spectroscopy. Anal Biochem 387:271–275CrossRefGoogle Scholar
  3. 3.
    Patel AK, Boyd PN (1995) An improved assay for antibody dependent cellular cytotoxicity based on time resolved fluorometry. J Immunol Methods 184:29–38CrossRefGoogle Scholar
  4. 4.
    Nguyen-Ngoc H, Durrieu C, Tran-Minh C (2009) Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides. Ecotoxicol Environ Save 72:316–320CrossRefGoogle Scholar
  5. 5.
    Grabowski J, Ke-Cheng H, Baker PR, Bornman CH (1997) Fluorogenic compound hydrolysis as a measure of toxicity-induced cytoplasmic viscosity and pH changes. Environ Pollut 98(1):1–5CrossRefGoogle Scholar
  6. 6.
    Wang X, Krebs LJ, Al-Nuri M, Pudavar HE, Ghosal S, Liebow C, Nagy AA, Schally AV, Prasad PN (1999) A chemically labeled cytotoxic agent: two-photon fluorophore for optical tracking of cellular pathway in chemotherapy. P Natl Acad Sci USA 96:11081–11084CrossRefGoogle Scholar
  7. 7.
    Merchant D, Scully PJ, Edwards R, Grabowski J (1998) Optical fibre fluorescence and toxicity sensor. Sensor Actuator B-Chem 48:476–484CrossRefGoogle Scholar
  8. 8.
    Pagé B, Pagé M, Noël C (1993) A new fluorimetric assay for cytotoxicity measurements in vitro. Int J Oncol 3:473–476Google Scholar
  9. 9.
    Dayeh VR, Chow SL, Schirmer K, Lynn DH, Bols NC (2004) Evaluating the toxicity of Triton X-100 to protozoan, fish, and mammalian cells using fluorescent dyes as indicators of cell viability. Ecotoxicol Environ Save 57:375–382CrossRefGoogle Scholar
  10. 10.
    Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P (2004) Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro 18:703–710CrossRefGoogle Scholar
  11. 11.
    Neethling FA, Koscec M, Oriol R, Cooper DKC, Koren E (1999) A reliable, rapid and inexpensive two-color fluorescence assay to monitor serum cytotoxicity in xenotransplantation. J Immunol Methods 222:31–44CrossRefGoogle Scholar
  12. 12.
    Dias N, Lima N (2002) A comparative study using a fluorescence-based and a direct-count assay to determine cytotoxicity in Tetrahymena pyriformis. Res Microbiol 153:313–322CrossRefGoogle Scholar
  13. 13.
    Yang A, Cardona DL, Barile FA (2002) In vitro cytotoxicity testing with fluorescence-based assays in cultured human lung and dermal cells. Cell Biol Toxicol 18:97–108CrossRefGoogle Scholar
  14. 14.
    Rat P, Korwin-Zmijowska C, Warnet JM, Adolphe M (1994) New in vitro fluorimetric microtitration assays for toxicological screening of drugs. Cell Biol Toxicol 10:329–337CrossRefGoogle Scholar
  15. 15.
    Braut-Boucher F, Pichon J, Rat P, Adolphe M, Aubery M, Font J (1995) A non-isotopic, highly sensitive, fluorimetric, cell-cell adhesion microplate assay using calcein AM-labeled lymphocytes. J Immunol Methods 178:41–51CrossRefGoogle Scholar
  16. 16.
    Essodaïgui M, Broxterman HJ, Garnier-Suillerot A (1998) Kinetic analysis of calcein and calcein-acetoxymethylester efflux mediated by the multidrug resistance protein and p-glycoprotein. Biochemistry 37:2243–2250CrossRefGoogle Scholar
  17. 17.
    Feller N, Broxterman HJ, Währer DCR, Pinedo HM (1995) ATP-dependent efflux of calcein by the multidrug resistance protein (MRP): no inhibition by intracellular glutathione depletion. FEBS Lett 368:385–388CrossRefGoogle Scholar
  18. 18.
    Borenfreund E, Babich H, Martin-Alguacil N (1988) Comparisons of two in vitro cytotoxicity assays-the neutral red (NR) and tetrazolium MTT tests. Toxicol In Vitro 2:1–6CrossRefGoogle Scholar
  19. 19.
    Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124CrossRefGoogle Scholar
  20. 20.
    Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77:990CrossRefGoogle Scholar
  21. 21.
    Deshpande RR, Heinzle E (2004) On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors. Biotechnol Lett 26:763CrossRefGoogle Scholar
  22. 22.
    Deshpande RR, Koch-Kirsch Y, Maas R et al (2005) Microplates with integrated oxygen sensors for kinetic cell respiration measurement and cytotoxicity testing in primary and secondary cell lines. Assay Drug Dev Techn 3:299CrossRefGoogle Scholar
  23. 23.
    John GT, Klimant I, Wittmann C et al (2003) Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation. Biotechnol Bioeng 81:829–836CrossRefGoogle Scholar
  24. 24.
    Hynes J, Hill R, Papkovsky DB (2006) The use of a fluorescence-based oxygen uptake assay in the analysis of cytotoxicity. Toxicol In Vitro 20:785CrossRefGoogle Scholar
  25. 25.
    Schoonen WG, Westerink WM, de Roos JA et al (2005) Cytotoxic effects of 100 reference compounds on Hep G2 and HeLa cells and of 60 compounds on ECC-1 and CHO cells. I mechanistic assays on ROS, glutathione depletion and calcein uptake. Toxicol In Vitro 19:505CrossRefGoogle Scholar
  26. 26.
    Jakubowski W, Bartosz G (2000) 2, 7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 24:757CrossRefGoogle Scholar
  27. 27.
    Bonini MG, Rota C, Tomasi A et al (2006) The oxidation of 2′, 7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 40:968CrossRefGoogle Scholar
  28. 28.
    Rider TH, Petrovick MS, Nargi FE et al (2003) A B cell-based sensor for rapid identification of pathogens. Science 301:213CrossRefGoogle Scholar
  29. 29.
    Wrobel K, Claudio E, Segade F et al (1996) Measurement of cytotoxicity by propidium iodide staining of target cell DNA. Application to the quantification of murine TNF-alpha. J Immunol Methods 189:243CrossRefGoogle Scholar
  30. 30.
    Wilkinson RW, Lee-MacAry AE, Davies D et al (2001) Antibody-dependent cell-mediated cytotoxicity: a flow cytometry-based assay using fluorophores. J Immunol Methods 258:183CrossRefGoogle Scholar
  31. 31.
    Cho MH, Niles A, Huang R et al (2008) A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker. Toxicol In Vitro 22:1099CrossRefGoogle Scholar
  32. 32.
    Collins LA, Torrero MN, Franzblau SG (1998) Green fluorescent protein reporter microplate assay for high-throughput screening of compounds against Mycobacterium tuberculosis. Antimicrob Agents Chemother 42:344Google Scholar
  33. 33.
    Montoya J, Varela-Ramirez A, Estrada A et al (2004) A fluorescence-based rapid screening assay for cytotoxic compounds. Biochem Biophys Res Commun 325:1517CrossRefGoogle Scholar
  34. 34.
    Kain SR (1999) Green fluorescent protein (GFP): applications in cell-based assays for drug discovery. Drug Discov Today 4(7):304–312CrossRefGoogle Scholar
  35. 35.
    Hellweg CE, Baumstark-Khan C, Horneck G (2001) Enhanced green fluorescent protein as reporter protein for biomonitoring of cytotoxic effects in mammalian cells. Anal Chim Acta 427:191–199CrossRefGoogle Scholar
  36. 36.
    Cahill PA, Knight AW, Billinton N et al (2004) The GreenScreen genotoxicity assay: a screening validation programme. Mutagenesis 19:105CrossRefGoogle Scholar
  37. 37.
    Ulleras E, Trzaska D, Arkusz J et al (2005) Development of the “Cell Chip”: a new in vitro alternative technique for immunotoxicity testing. Toxicology 206:245CrossRefGoogle Scholar
  38. 38.
    Wagner W, Walczak-Drzewiecka A, Slusarczyk A et al (2006) Fluorescent Cell Chip a new in vitro approach for immunotoxicity screening. Toxicol Lett 162:55CrossRefGoogle Scholar
  39. 39.
    Garcia-Alonso J, Greenway GM, Hardege JD et al (2009) A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds. Biosens Bioelectron 24:1508CrossRefGoogle Scholar
  40. 40.
    Bondza-Kibangou P, Millot C, Dufer J et al (2001) Microspectrofluorimetry of autofluorescence emission from human leukemic living cells under oxidative stress. Biol Cell 93:273CrossRefGoogle Scholar
  41. 41.
    Thompson JA (1997) Cellular fluorescence capacity as an endpoint in algal toxicity testing. Chemosphere 35(9):2027–2037CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Division of Biotechnology/IFMLinköping UniversityLinköpingSweden

Personalised recommendations