Advertisement

Analytical and Bioanalytical Chemistry

, Volume 397, Issue 4, pp 1417–1435 | Cite as

Near-infrared quantum dots for deep tissue imaging

  • Ravindran Girija Aswathy
  • Yasuhiko Yoshida
  • T. Maekawa
  • D. Sakthi KumarEmail author
Review

Abstract

Developments in nanotechnology have paved the way for the early detection, treatment, and prevention of several tumors which affect mankind. In the past few years, near-infrared (NIR) fluorescence imaging techniques have emerged that enable the in vivo imaging of physiological, metabolic, and molecular function. The NIR window, also known as the diagnostic window (700–900 nm), can be explored for sensitive detection techniques. Nanoparticles, particularly semiconductor quantum dots (QDs), can be utilized for the purpose of optical imaging. These semiconductor QDs possess novel electronic, optical, magnetic, and structural properties which are quite different from those of bulk materials. NIR QDs with these unique properties can be utilized as contrast agents for optical imaging, particularly for deep tissue imaging. Deep tissue imaging provides more information about the pathological status of the disease, which makes the treatment more effective and efficient. In this review we highlight the importance of NIR QDs as probes for optical imaging. We describe the different types of NIR QDs, their synthesis, and their application for deep tissue imaging along with recently developed self-illuminating NIR QDs.

Figure

NIR QDs for deep tissue imaging

Keywords

Quantum dots Near-infrared imaging Deep tissue imaging Nanotechnology In vivo imaging Optical imaging 

Notes

Acknowledgement

R.G.A. would like to acknowledge MEXT, Japan, for providing fellowship to conduct her doctoral course.

References

  1. 1.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Proc Natl Acad Sci USA 87:9868–9872Google Scholar
  2. 2.
    Howe FA, Robinson SP, Rodrigues LM, Griffiths JR (1999) Magn Reson Imaging 17:1307–1318Google Scholar
  3. 3.
    Krishna MC, English S, Yamada K, Yoo J, Murugasen R, Devasahayam N, Cook JA, Golman K, Ardenkjaer-Larsen JH, Subramanian S, Mitchell JB (2002) Proc Natl Acad Sci USA 99:2216–2221Google Scholar
  4. 4.
    Ilangovan G, Li HQ, Zweier JL, Krishna MC, Mitchell JB, Kuppusamy P (2002) Magn Reson Med 48:723–730Google Scholar
  5. 5.
    Subramanian S, Devasahayam N, Murugesan R, Yamada K, Cook JA, Taube A, Mitchell JB, Lohman JA, Krishna MC (2002) Magn Reson Med 48:370–379Google Scholar
  6. 6.
    Kaarstad K, Bender D, Bentzen L, Munk OL, Keiding S (2002) J Nucl Med 43:940–947Google Scholar
  7. 7.
    Zhuang HM, Pourdehnad M, Yamamoto LES, AJ LM, Li P, Mozley DP, Rossman MD, Albelda SM, Alavi A (2001) J Nucl Med 42:1412–1417Google Scholar
  8. 8.
    Seidel J, Vaquero JJ, Pascau J, Desco M, Johnson CA, Green MV (2002) In: Proceedings of IEEE international symposium on biomedical imaging, pp 545–548Google Scholar
  9. 9.
    Zrazhevskiy P, Gao X (2009) Nano Today 4:414–428Google Scholar
  10. 10.
    Winnard P, Raman V (2007) J Cell Biochem 90:454–463Google Scholar
  11. 11.
    Kubo N, Zhao S, Fujiki Y, Kinda A, Motomura N, Katoh C, Shiga T, Kawashima H, Kuge Y, Tamaki N (2005) Ann Nucl Med 19:633–639Google Scholar
  12. 12.
    Bergström M, Swain P, Park PO (2007) Gastrointest Endosc 66:174–178Google Scholar
  13. 13.
    Hekmat H, Al-toma A, Mallant MP, Mulder CJ, Jacobs MA (2007) Scand J Gastroenterol 42:277–278Google Scholar
  14. 14.
    Furukawa T, Sato H, Shinzawa H, Noda I, Ochiai S (2007) Anal Sci 23:871–876Google Scholar
  15. 15.
    Wessels JT, Busse AC, Mahrt J, Dullin C, Grabbe E, Mueller GA (2007) Cytometry A 71:542–549Google Scholar
  16. 16.
    Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann W, Grötzinger C (2001) Nat Biotechnol 19:327–331Google Scholar
  17. 17.
    Sato A, Klaunberg B, Tolwani R (2004) Comp Med 54:631–634Google Scholar
  18. 18.
    Alivisatos AP (2004) Nat Biotechnol 22:47–52Google Scholar
  19. 19.
    Ferrari M (2005) Nat Rev Cancer 5:161–171Google Scholar
  20. 20.
    Niemeyer CM (2001) Angew Chem Int Ed 40:4128–4158Google Scholar
  21. 21.
    Cao YWC, Jin RC, Mirkin CA (2002) Science 297:1536–1540Google Scholar
  22. 22.
    Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie SM (2005) Curr Opin Biotechnol 16:63–72Google Scholar
  23. 23.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544Google Scholar
  24. 24.
    Nie SM, Xing Y, Kim GJ, Simons JW (2007) Annu Rev Biomed Eng 9:257–288Google Scholar
  25. 25.
    Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562Google Scholar
  26. 26.
    Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie SM, O’Regan RM (2006) Lancet Oncol 7:657–667Google Scholar
  27. 27.
    Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) J Neurophys 91:1908–1912Google Scholar
  28. 28.
    Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Science 300:1434–1437Google Scholar
  29. 29.
    Hilderbrand SA, Weissleder R (2009) Curr Opin Chem Biol 14:1–9Google Scholar
  30. 30.
    Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R (2002) Bioconjug Chem 13:554–560Google Scholar
  31. 31.
    Jin T, Yoshioka Y, Fujii F, Komai Y, Seki J, Seiyama A (2008) Chem Commun 5764–5766Google Scholar
  32. 32.
    Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN (2007) Bioconjug Chem 18:1391–1396Google Scholar
  33. 33.
    Licha K (2002) In: Krause W (ed) Contrast agents II. Topics in current chemistry, vol 222. Springer, Heidelberg, pp 1–29Google Scholar
  34. 34.
    Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Mol Imaging 2:50–64Google Scholar
  35. 35.
    Frangioni JV (2003) Curr Opin Chem Biol 7:626–634Google Scholar
  36. 36.
    Zhong XH, Feng YY, Knoll W, Han MY (2003) J Am Chem Soc 125:13559–13563Google Scholar
  37. 37.
    Bailey RE, Nie SM (2003) J Am Chem Soc 125:7100–7106Google Scholar
  38. 38.
    Hines MA, Scholes GD (2003) Adv Mater 15:1844–1849Google Scholar
  39. 39.
    Kim S, Fisher B, Eisler HJ, Bawendi MG (2003) J Am Chem Soc 125:11466–11467Google Scholar
  40. 40.
    Qu LH, Peng XG (2002) J Am Chem Soc 124:2049–2055Google Scholar
  41. 41.
    Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollingsworth JA (2004) J Am Chem Soc 126:11752–11753Google Scholar
  42. 42.
    Smith AM, Duan H, Mohs AM, Nie S (2008) Adv Drug Deliv Rev 60:1226–1240Google Scholar
  43. 43.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker J, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Nat Biotechnol 22:93–98Google Scholar
  44. 44.
    Kim SW, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG (2005) J Am Chem Soc 127:10526–10532Google Scholar
  45. 45.
    Zimmer JP, Kim SW, Onishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) J Am Chem Soc 128:2526–2527Google Scholar
  46. 46.
    Liu WH, Choi HS, Zimmer JP, Tanaka E, Frangioni JV, Bawendi MG (2007) J Am Chem Soc 129:14530–14531Google Scholar
  47. 47.
    Kim S, Fisher B, Eisler HJ, Bewandi (2003) J Am Chem Soc 125:11466–11467Google Scholar
  48. 48.
    Sima PD, Kanofsky JR (2000) Photochem Photobiol 71:413–421Google Scholar
  49. 49.
    Alivisatos AP (1996) J Phys Chem 100:13226–13239Google Scholar
  50. 50.
    Alivisatos AP (1996) Science 271:933–937Google Scholar
  51. 51.
    Smith AM, Gao X, Nie SM (2004) Photochem Photobiol 80:377Google Scholar
  52. 52.
    Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer, Weiss GS (2006) Biomaterials 27:1679–1687Google Scholar
  53. 53.
    Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) Nat Biotechnol 22:969–976Google Scholar
  54. 54.
    Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Nat Biotechnol 21:41–46Google Scholar
  55. 55.
    Gao X, Nie S (2003) Trends Biotechnol 21:371–373Google Scholar
  56. 56.
    Morgan NY, English S, Chen W, Chernomordik V, Russo A, Smith P, Gandjbakhche A (2005) Acad Radiol 12:313–323Google Scholar
  57. 57.
    Chen H, Wang Y, Xu J, Ji J, Zhang J, Hu Y, Gu Y (2008) J Fluoresc 18:801–811Google Scholar
  58. 58.
    Zhao D, He Z, Chan WH, Choi MMF (2009) J Phys Chem C 113:1293–1300Google Scholar
  59. 59.
    Harrison MT, Kershaw SV, Burt MG, Eychmuller A, Weller H, Rogach AL (2000) Mater Sci Eng B 69:355–360Google Scholar
  60. 60.
    Xia SY, Zhu CQ (2008) Analyst 133:928–932Google Scholar
  61. 61.
    Kim S, Shim W, Seo H, Bae JH, Sung J, Choi SH, Moon WK, Lee G, Lee B, Kim SW (2009) Chem Commun 1267–1269Google Scholar
  62. 62.
    Zhang Y, Li Y, Yan XP (2009) Small 5:185–189Google Scholar
  63. 63.
    Yu K, Zaman B, Romanova S, Wang D (2005) Small 1:332–338Google Scholar
  64. 64.
    Blackman B, Battaglia D, Peng X (2008) Chem Mater 20:4847–4853Google Scholar
  65. 65.
    Aharoni A, Mokari T, Popov I, Banin U (2006) J Am Chem Soc 128:257–264Google Scholar
  66. 66.
    Bailey RE, Strausburg JB, Nie SM (2004) J Nanosci Nanotechnol 4:569–574Google Scholar
  67. 67.
    Rogach AL, Eychm üller A, Hickey SG, Kershaw SV (2007) Small 3:536–557Google Scholar
  68. 68.
    Mao W, Guo J, Yang W, Wang C, He J, Chen J (2007) Nanotechnology 18:48561Google Scholar
  69. 69.
    Liang GX, Gu MM, Zhang JR, Zhu JJ (2009) Nanotechnology 20:415103Google Scholar
  70. 70.
    Pradhan N, Goorskey D, Thessing J, Peng X (2005) J Am Chem Soc 127:17586–17587Google Scholar
  71. 71.
    Xie R, Chen K, Chen X, Peng (2008) Nano Res 1:457–464Google Scholar
  72. 72.
    Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z, Peng X, Chen X (2010) Small 6:256–261Google Scholar
  73. 73.
    Li L, Daou TJ, Texier I, Chi TTK, Liem NQ, Reiss P (2009) Chem Mater 21:2422–2429Google Scholar
  74. 74.
    Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q (2010) J Am Chem Soc 132:1470–1471Google Scholar
  75. 75.
    Allen PM, Bawendi MG (2008) J Am Chem Soc 130:9240–9241Google Scholar
  76. 76.
    Pan D, Wang X, Zhou ZH, Chen W, Xu C, Lu Y (2009) Chem Mater 21:2489–2493Google Scholar
  77. 77.
    Mikulec FV, Kuno M, Bennati M, Hall DA, Griffin RG, Bawendi MG (2000) J Am Chem Soc 122:2532–2540Google Scholar
  78. 78.
    Sahoo Y, Poddar P, Srikanth H, Lucey DW, Prasad PN (2005) J Phys Chem B 109:15221–15225Google Scholar
  79. 79.
    Yong KT (2009) Nanotechnology 20:015102Google Scholar
  80. 80.
    Jiang W, Singhal A, Kim BYS, Zheng J, Rutka JT, Wang C, Chan WCW (2008) J Assoc Lab Automat 13:6–12Google Scholar
  81. 81.
    Jin T, Fujii F, Komai Y, Seki J, Seiyama A, Yoshioka Y (2008) Int J Mol Sci 9:2044–2061Google Scholar
  82. 82.
    Zhang W, Chen G, Wang J, Ye B, Zhong X (2009) Inorg Chem 48:9723–9731Google Scholar
  83. 83.
    Susumu K, Uyeda HT, Medintz IL, Pons T, Delehanty JB, Mattoussi H (2007) J Am Chem Soc 129:13987–13996Google Scholar
  84. 84.
    Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Proc Natl Acad Sci USA 99:12617–12621Google Scholar
  85. 85.
    Gussin HA, Tomlinson ID, Little DM, Warnement MR, Qian H, Rosenthal SJ, Pepperberg DR (2006) J Am Chem Soc 128:15701–15713Google Scholar
  86. 86.
    Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stölzle S, Fertig N, Parak WJ (2005) Nano Lett 5:2331–2338Google Scholar
  87. 87.
    Lewis RJ (2004) Sax’s dangerous properties of industrial materials, 11th edn. Wiley, New YorkGoogle Scholar
  88. 88.
    Neerman MF, Bootheb DM (2003) Pharmacol Res 6:523–526Google Scholar
  89. 89.
    Papagiannaros A, Levchenko T, Hartner W, Mongayt D, Torchilin V (2009) Nanomed Nanotechnol Biol Med 5:216–224Google Scholar
  90. 90.
    Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, Chen XY, Dai HJ (2007) Nat Nanotechnol 2:47–52Google Scholar
  91. 91.
    Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Nat Biotechnol 23:1418–1423Google Scholar
  92. 92.
    Lee ES, Na K, Bae YH (2003) J Control Release 91:103–113Google Scholar
  93. 93.
    Ntziachristos V, Bremer C, Weissleder R (2003) Eur Radiol 13:195–208Google Scholar
  94. 94.
    Sevick-Muraca EM, Houston JP, Gurfinkel M (2002) Curr Opin Chem Biol 6:642–650Google Scholar
  95. 95.
    Eidsath A, Chernomordik V, Gandjbakhche A, Smith P, Russo A (2002) Phys Med Biol 47:4079–4092Google Scholar
  96. 96.
    Weissleder R, Mahmood U (2001) Radiology 219:316–333Google Scholar
  97. 97.
    O’Leary MA, Boas DA, Li XD, Chance B, Yodh AG (1996) Opt Lett 21:158–160Google Scholar
  98. 98.
    Paithankar DY, Chen AU, Pogue BW, Patterson MS, Sevick-Muraca EM (1997) Appl Opt 36:2260–2272Google Scholar
  99. 99.
    Medintz IL H, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446Google Scholar
  100. 100.
    Medintz IL, Mattoussi H, Clapp AR (2008) Int J Nanomed 3:151–167Google Scholar
  101. 101.
    Sen D, Deerinck TJ, Ellisman MH, Parker I, Cahalan MD (2008) PLoS ONE 3:e3290Google Scholar
  102. 102.
    Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JAJ, Waggoner AS, Bruchez MP (2007) Bioconjug Chem 18:389–396Google Scholar
  103. 103.
    Youn J, Won N, Kim S, Choi JH (2008) Biomedical optics, OSA technical digest (CD) (Optical Society of America, 2008), paper BSuE2. http://www.opticsinfobase.org/abstract.cfm?URI=BIOMED-2008-BSuE2
  104. 104.
    Soltesz EG, Kim S, Laurence RG, DeGrand AM, Parungo CP, Dor DM, Cohn LH, Bawendi MG, Frangioni JV, Mihaljevic T (2005) Ann Thorac Surg 79:269–277Google Scholar
  105. 105.
    Parungo CP, Colson YL, Kim SW, Kim S, Cohn LH, Bawendi MG, Frangioni JV (2005) Chest 127:1799–1804Google Scholar
  106. 106.
    Parungo CP, Ohnishi S, Kim SW, Kim S, Laurence RG, Soltesz EG, Chen FY, Colson YL, Cohn LH, Bawendi MG, Frangioni JV (2005) J Thorac Cardiovasc Surg 129:844–850Google Scholar
  107. 107.
    Soltesz EG, Kim S, Kim SW, Laurence RG, DeGrand AM, Parungo CP, Cohn LH, Bawendi MG, Frangioni JV (2006) Ann Surg Oncol 13:386–396Google Scholar
  108. 108.
    Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Nano Lett 6:669–676Google Scholar
  109. 109.
    Diagaradjane P, Orenstein-Cardona JM, Colόn Casasnovas NE, Deorukhkar A, Shentu S, Kuno N, Schwartz DL, Gelovani JG, Krishnan S (2008) Clin Cancer Res 14:731–741Google Scholar
  110. 110.
    Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CAS, Urano Y, Choyke PL (2007) Nano Lett 7:1711–1716Google Scholar
  111. 111.
    So MK, Xu C, Loening AM, Gambhir SS, Rao J (2006) Nat Biotechnol 24:339–343Google Scholar
  112. 112.
    Xia Z, Xing Y, So MK, Koh AL, Sinclair R, Rao J (2008) Anal Chem 80:8649–8655Google Scholar
  113. 113.
    Xia Z, Rao J (2009) Curr Opin Biotechnol 20:1–8Google Scholar
  114. 114.
    Yao H, Zhang Y, Xiao F, Xia Z, Rao J (2007) Angew Chem Int Ed 46:4346–4349Google Scholar
  115. 115.
    Park J, Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Angew Chem Int Ed 47:7284–7288Google Scholar
  116. 116.
    Zintchenko A, Susha AS, Concia M, Feldmann J, Wagner E, Rogach AL, Ogris M (2009) Mol Ther 17:1849–1856Google Scholar
  117. 117.
    Nel A, Xia T, Mädler L, Li N (2006) Science 311:622–627Google Scholar
  118. 118.
    Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18Google Scholar
  119. 119.
    Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Adv Drug Deliv Rev 61:457–466Google Scholar
  120. 120.
    Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, Gray JW, Alivisatos AP, Chen FF (2006) Nano Lett 6:800–808Google Scholar
  121. 121.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH (2002) Albert Libchaber A. Science 298:1759–1762Google Scholar
  122. 122.
    Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick V, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Part Fibre Toxicol 2:1–5Google Scholar
  123. 123.
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  124. 124.
    Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Toxicol Sci 91:159–165Google Scholar
  125. 125.
    Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Nat Biotechnol 21:47–51Google Scholar
  126. 126.
    Hoshino A, Fujioka K, Oku T, Suga M, Sasaki T, Ohta M, Yasuhara K, Suzuki K, Yamamoto K (2004) Nano Lett 4:2163–2188Google Scholar
  127. 127.
    Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Nat Med 10:993–998Google Scholar
  128. 128.
    Chan WC, Nie S (1998) Science 281:2016–2018Google Scholar
  129. 129.
    Chen F, Gerion D (2004) NanoLett 4:1827–1832Google Scholar
  130. 130.
    Kloepfer JA, Mielke RE, Nadeau JL (2005) Appl Environ Microbiol 71:2548–2557Google Scholar
  131. 131.
    Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Bioconjug Chem 15:79–86Google Scholar
  132. 132.
    Hardman R (2006) Environ Health Perspect 114:165–172Google Scholar
  133. 133.
    Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Proc Natl Acad Sci USA 104:2050–2055Google Scholar
  134. 134.
    Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaele D, Taran F, Georgin D, Couvreur P, Taverna M (2007) Electrophoresis 28:2252–2261Google Scholar
  135. 135.
    Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV (2009) Nano Lett 9:2354–2359Google Scholar
  136. 136.
    Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Nat Biotechnol 25:1165–1170Google Scholar
  137. 137.
    Lee HA, Leavens TL, Mason SE, Monteiro-Riviere NA, Riviere JE (2009) Nano Lett 9:794–799Google Scholar
  138. 138.
    Weng J, Ren J (2006) Curr Med Chem 13:897–909Google Scholar
  139. 139.
    Smith AM, Mohs AM, Nie S (2009) Nat Nanotechnol 4:56–63Google Scholar
  140. 140.
    Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Nature 383:802–806Google Scholar
  141. 141.
    Efros AL, Rosen M (1997) Phys Rev Lett 78:1110–1113Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ravindran Girija Aswathy
    • 1
  • Yasuhiko Yoshida
    • 1
  • T. Maekawa
    • 1
  • D. Sakthi Kumar
    • 1
    Email author
  1. 1.Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New ScienceToyo UniversityKawagoeJapan

Personalised recommendations