Advertisement

Analytical and Bioanalytical Chemistry

, Volume 397, Issue 3, pp 1225–1233 | Cite as

Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography–mass spectrometry

  • Markus R. Meyer
  • Jens Wilhelm
  • Frank T. Peters
  • Hans H. Maurer
Original Paper

Abstract

In recent years, a new class of designer drugs has appeared on the drugs of abuse market in many countries, namely, the so-called beta-keto (bk) designer drugs such as mephedrone (bk-4-methylmethamphetamine), butylone (bk-MBDB), and methylone (bk-MDMA). The aim of the present study was to identify the metabolites of mephedrone in rat and human urine using GC-MS techniques and to include mephedrone, butylone, and methylone within the authors’ systematic toxicological analysis (STA) procedure. Six phase I metabolites of mephedrone were detected in rat urine and seven in human urine suggesting the following metabolic steps: N-demethylation to the primary amine, reduction of the keto moiety to the respective alcohol, and oxidation of the tolyl moiety to the corresponding alcohols and carboxylic acid. The STA procedure allowed the detection of mephedrone, butylone, methylone, and their metabolites in urine of rats treated with doses corresponding to those reported for abuse of amphetamines. Besides macro-based data evaluation, an automated evaluation using the automated mass spectral deconvolution and identification system was performed. Mephedrone and butylone could be detected also in human urine samples submitted for drug testing. Assuming similar kinetics in humans, the described STA procedure should be suitable for proof of an intake of the bk-designer drugs in human urine.

Keywords

Mephedrone Butylone Methylone Designer drug Metabolism GC-MS AMDIS 

Notes

Acknowledgments

The authors thank Armin A. Weber and Gabi Ulrich for their support.

References

  1. 1.
    Bossong MG, Van Dijk JP, Niesink RJ (2005) Addict Biol 10:321–323CrossRefGoogle Scholar
  2. 2.
    Kamata HT, Shima N, Zaitsu K, Kamata T, Miki A, Nishikawa M, Katagi M, Tsuchihashi H (2006) Xenobiotica 36:709–723CrossRefGoogle Scholar
  3. 3.
    Shimizu E, Watanabe H, Kojima T, Hagiwara H, Fujisaki M, Miyatake R, Hashimoto K, Iyo M (2007) Prog Neuropsychopharmacol Biol Psychiatry 31:288–291CrossRefGoogle Scholar
  4. 4.
    Nagai F, Nonaka R, Satoh Hisashi KK (2007) Eur J Pharmacol 559:132–137CrossRefGoogle Scholar
  5. 5.
    Maurer HH, Pfleger K, Weber AA (2007) Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, Tsuchihashi H, Mori Y (2009) Forensic Sci Int 188:131–139CrossRefGoogle Scholar
  7. 7.
    Sauer C, Peters FT, Haas C, Meyer MR, Fritschi G, Maurer HH (2009) J Mass Spectrom 44:952–964CrossRefGoogle Scholar
  8. 8.
    McKay AF, Ott WL, Taylor GW, Buchanan MN, Crooker JF (1950) Can J For Res 28:683–688Google Scholar
  9. 9.
    Ewald AH, Ehlers D, Maurer HH (2008) Anal Bioanal Chem 390:1837–1842CrossRefGoogle Scholar
  10. 10.
    Maurer HH, Pfleger K, Weber AA (2011) Mass spectral library of drugs, poisons, pesticides, pollutants and their metabolites. Wiley-VCH, WeinheimGoogle Scholar
  11. 11.
    Maurer HH, Pfleger K, Weber AA (2007) Mass spectral library of drugs, poisons, pesticides, pollutants and their metabolites. Wiley-VCH, WeinheimGoogle Scholar
  12. 12.
    Meyer MR, Peters FT, Maurer HH (2010) Clin Chem. doi: 10.1373/clinchem.2009.135517
  13. 13.
    Michaelis W, Russel JH, Schindler O (1970) J Med Chem 13:497–503CrossRefGoogle Scholar
  14. 14.
    Shin H, Park J (1994) Korean Biochem J 27:357–361Google Scholar
  15. 15.
    Springer D, Fritschi G, Maurer HH (2003) J Chromatogr B Analyt Technol Biomed Life Sci 796:253–266CrossRefGoogle Scholar
  16. 16.
    Peters FT, Meyer MR, Fritschi G, Maurer HH (2005) J Chromatogr B Analyt Technol Biomed Life Sci 824:81–91CrossRefGoogle Scholar
  17. 17.
    McLafferty FW, Turecek F (1993) Interpretation of mass spectra. University Science Books, Mill ValleyGoogle Scholar
  18. 18.
    Smith RM, Busch KL (1999) Understanding mass spectra—a basic approach. Wiley, New YorkGoogle Scholar
  19. 19.
    Maurer HH, Pfleger K, Weber AA (2011) Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites. Wiley-VCH, WeinheimGoogle Scholar
  20. 20.
    Kovats E (1958) Helv Chim Acta 41:1915–1932CrossRefGoogle Scholar
  21. 21.
    de-Zeeuw RA, Franke JP, Maurer HH, Pfleger K (1992) Gas chromatographic retention indices of toxicologically relevant substances and their metabolites (Report of the DFG Commission for Clinical Toxicological Analysis, Special Issue of the TIAFT Bulletin). Wiley-VCH, WeinheimGoogle Scholar
  22. 22.
    DFG Senatskommission für Klinisch-toxikologische Analytik (1982) J Clin Chem Clin Biochem 20:699Google Scholar
  23. 23.
    Schifano F, Corkery J, Deluca P, Oyefeso A, Ghodse AH (2006) J Psychopharmacol 20:456–463CrossRefGoogle Scholar
  24. 24.
    Ensslin HK, Kovar KA, Maurer HH (1996) J Chromatogr B Biomed Sci Appl 683:189–197CrossRefGoogle Scholar
  25. 25.
    Maurer HH, Ensslin HK, Kovar KA (1990) Bull Soc Sci Med Grand-Duche Lux 127(suppl):467–471Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Markus R. Meyer
    • 1
  • Jens Wilhelm
    • 3
    • 4
  • Frank T. Peters
    • 2
  • Hans H. Maurer
    • 1
  1. 1.Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and ToxicologySaarland UniversityHomburg/SaarGermany
  2. 2.Institute of Forensic MedicineFriedrich Schiller UniversityJenaGermany
  3. 3.Department of Psychiatry and PsychotherapySaarland University Hospital66421Homburg/SaarGermany
  4. 4.Department of NeurologyCaritas Hospital DillingenDillingen/SaarGermany

Personalised recommendations