Analytical and Bioanalytical Chemistry

, Volume 397, Issue 3, pp 1355–1361 | Cite as

A selective molecularly imprinted polymer-solid phase extraction for the determination of fenitrothion in tomatoes

  • Leonardo Augusto de Barros
  • Isarita Martins
  • Susanne RathEmail author
Original Paper


A new and selective sorbent for molecularly imprinted solid-phase extraction (MISPE) was developed and applied for the determination of residues of fenitrothion (FNT) in tomatoes, using HPLC coupled to photodiode array detection (HPLC-DAD). Using FNT as the template molecule, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, toluene as the porogenic solvent, and bulk polymerization as the synthetic method, a molecularly imprinted polymer (MIP) was synthesized. In order to choose the medium which promotes the best molecular recognition of FNT by the MIP, the adsorption of FNT by the MIP was studied in different media containing acetonitrile and toluene. Besides FNT, three structurally related compounds were used to evaluate the selectivity of the FNT-molecularly imprinted polymer. The MIP exhibited the highest selective rebinding to FNT. The method developed was validated, using fortified blank tomato samples. The extraction efficiency was 96%. The limits of detection and quantitation were 0.050 and 0.130 µg g−1, respectively. The intra-day precision was 5.9% and the inter-day precision 8.1%. The accuracy was higher than 89% for a concentration level around the maximum residue limit of 0.5 µg g−1.


Molecularly imprinted polymer Molecularly imprinted solid-phase extraction Fenitrothion Tomatoes 



The authors gratefully acknowledge financial support from CAPES and FAPESP (2007/02306-9), and thank Professor C.H. Collins for language assistance.


  1. 1.
    Baggiani C, Anfossi L, Giovannoli C (2007) Anal Chim Acta 591:29–39CrossRefGoogle Scholar
  2. 2.
    Sánchez-Ortega A, Sampedro MC, Unceta N, Goicolea MA, Barrio RJ (2005) J Chromatogr A 1094:70–76CrossRefGoogle Scholar
  3. 3.
    Zhu X, Yang J, Su Q, Cai J, Gao Y (2005) J Chromatogr A 1092:161–169CrossRefGoogle Scholar
  4. 4.
    Sánchez A, Millán S, Sampedro MC, Unceta N, Rodríguez E, Goicolea MA, Barrio RJ (2008) J Chromatogr A 1177:170–174CrossRefGoogle Scholar
  5. 5.
    Pereira LA, Rath S (2009) Anal Bioanal Chem 393:1063–1072CrossRefGoogle Scholar
  6. 6.
    Zamora O, Paniagua EE, Cacho C, Vera-Avila LE, Perez-Conde C (2009) Anal Bional Chem 393:1745–1753CrossRefGoogle Scholar
  7. 7.
    Figueiredo EC, Oliveira DM, Siqueira MEPB, Arruda MAS (2009) Anal Chim Acta 635:102–107CrossRefGoogle Scholar
  8. 8.
    Javanbakht M, Shaabani N, Akbari-Adergani B (2009) J Chromatogr B 877:2537–2544CrossRefGoogle Scholar
  9. 9.
    Puoci F, Cirillo G, Curcio M, Iemma F, Spizzirri UG, Picci N (2007) Anal Chim Acta 593:164–170CrossRefGoogle Scholar
  10. 10.
    Jing T, Gao XD, Wang P, Lin YF, Hu XZ, Hao QL, Zhou YK, Mei SR (2009) Anal Bioanal Chem 393:2009–2018CrossRefGoogle Scholar
  11. 11.
    Puoci F, Curcio M, Cirillo G, Iemma F, Spizzirri UG, Picci N (2008) Food Chem 106:836–842CrossRefGoogle Scholar
  12. 12.
    Jiang T, Zhao L, Chu B, Feng Q, Yan W, Lin JM (2009) Talanta 78:442–447CrossRefGoogle Scholar
  13. 13.
    Yang T, Li YH, Wei S, Li Y, Deng A (2008) Anal Bional Chem 391:2905–2914CrossRefGoogle Scholar
  14. 14.
    Kirk C, Jensen M, Kjaer CN, Smedskjaer MM, Larsen KL, Wimmer R, Yu D (2009) Biosens Bioelectron 25:623–628CrossRefGoogle Scholar
  15. 15.
    Bravo JC, Garcinuño RM, Fernández P, Durand JS (2009) Anal Bioanal Chem 393:1763–1768CrossRefGoogle Scholar
  16. 16.
    Pichon V, Chapuis-Hugon F (2008) Anal Chim Acta 622:48–61CrossRefGoogle Scholar
  17. 17.
    Jing T, Gao XD, Wang P, Wang Y, Lin YF, Hu XZ, Hao QL, Zhou YK, Mei SR (2009) Anal Bioanal Chem 393:2009–2018CrossRefGoogle Scholar
  18. 18.
    Wu H, Zhao Y, Nie M, Jiang Z (2009) Sep Purif Technol 68:97–104CrossRefGoogle Scholar
  19. 19.
    Yin J, Yang G, Chen Y (2005) J Chromatogr A 1090:68–75CrossRefGoogle Scholar
  20. 20.
    Henry OYF, Piletsky SA, Cullen DC (2008) Biosens Bioelectron 23:1769–1775CrossRefGoogle Scholar
  21. 21.
    Prasad BB, Srivastava S, Tiwari K, Sharma PS (2009) Engi J 44:232–239Google Scholar
  22. 22.
    Wu H, Zhao Y, Nie M, Jiang Z (2009) Sep Purif Technol 68:97–104CrossRefGoogle Scholar
  23. 23.
    Sun Z, Schüssler W, Sengl M, Niessner R, Knopp D (2008) Anal Chim Acta 620:73–81CrossRefGoogle Scholar
  24. 24.
    INCHEM (2009) International Programme on Chemical Safety:, accessed on February 2010
  25. 25.
    Spivak DA (2005) Adv Drug Deliv Rev 57:1779–1794CrossRefGoogle Scholar
  26. 26.
    Caro E, Marcé RM, Borrul F, Cormack PAG, Sherrington DC (2006) Trends Anal Chem 25:143–154CrossRefGoogle Scholar
  27. 27.
    Al-Kindy S, Badia R, Suárez-Rodríguez JL, Díaz García ME (2000) Crit Rev Anal Chem 30:291–309CrossRefGoogle Scholar
  28. 28.
    Song S, Shi X, Li R, Lin Z, Wu A, Zhang D (2008) Process Biochem 43:1209–1214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Leonardo Augusto de Barros
    • 1
  • Isarita Martins
    • 2
  • Susanne Rath
    • 1
    Email author
  1. 1.Institute of Chemistry, Department of Analytical ChemistryUniversity of CampinasCampinasBrazil
  2. 2.Laboratory of Toxicological Analysis, Department of Clinical and Toxicological AnalysisFederal University of AlfenasAlfenasBrazil

Personalised recommendations