Analytical and Bioanalytical Chemistry

, Volume 397, Issue 3, pp 943–951 | Cite as

LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns

  • Martin Krauss
  • Heinz Singer
  • Juliane Hollender


This article provides an overview of the state-of-the-art and future trends of the application of LC–high resolution mass spectrometry to the environmental analysis of polar micropollutants. Highly resolved and accurate hybrid tandem mass spectrometry such as quadrupole/time-of-flight and linear ion trap/orbitrap technology allows for a more reliable target analysis with reference standards, a screening for suspected analytes without reference standards, and a screening for unknowns. A reliable identification requires both high resolving power and high mass spectral accuracy to increase selectivity against the matrix background and for a correct molecular formula assignment to unknown compounds. For the identification and structure elucidation of unknown compounds within a reasonable time frame and with a reasonable soundness, advanced automated software solutions as well as improved prediction systems for theoretical fragmentation patterns, retention times, and ionization behavior are needed.


a Plot of nominal m/z vs. mass defect of all matrix ions observed in two retention time (Rt) windows of a full-scan HRMS chromatogram at a resolution of 60,000 from a background soil extract. b Extracted ion chromatograms of the herbicide linuron spiked into a background soil extract and of a suspected transformation product of lenacil in a soil extract, both showing a different mass defect


High resolution mass spectrometry Mass accuracy Polar organic compounds Non-target screening Resolving power 



We thank Thomas Bucheli, Andreas Gerecke, Damian Helbling, and two anonymous reviewers for helpful comments concerning this manuscript.


  1. 1.
    Celiz MD, Tso J, Aga DS (2009) Environ Toxicol Chem 28:2473–2484CrossRefGoogle Scholar
  2. 2.
    Petrovic M, Barceló D (2006) J Mass Spectrom 41:1259–1267CrossRefGoogle Scholar
  3. 3.
    Kellmann M, Muenster H, Zomer P, Mol H (2009) J Am Soc Mass Spectrom 20:1464–1476CrossRefGoogle Scholar
  4. 4.
    Kosjek T, Heath E, Petrovic M, Barceló D (2007) Trends Anal Chem 26:1076–1085CrossRefGoogle Scholar
  5. 5.
    Hernández F, Pozo OJ, Sancho JV, Lopez FJ, Marin JM, Ibáñez M (2005) Trends Anal Chem 24:596–612CrossRefGoogle Scholar
  6. 6.
    Pozo ÓJ, Sancho JV, Ibáñez M, Hernández F, Niessen WMA (2006) Trends Anal Chem 25:1030–1042CrossRefGoogle Scholar
  7. 7.
    Hogenboom AC, van Leerdam JA, de Voogt P (2009) J Chromatogr A 1216:510–519CrossRefGoogle Scholar
  8. 8.
    Lim H-K, Chen J, Sensenhauser C, Cook K, Subrahmanyam V (2007) Rapid Commun Mass Spectrom 21:1821–1832CrossRefGoogle Scholar
  9. 9.
    Lacorte S, Fernández-Alba AR (2006) Mass Spectrom Rev 25:866–880CrossRefGoogle Scholar
  10. 10.
    Sancho JV, Pozo ÓJ, Ibáñez M, Hernández F (2006) Anal Bioanal Chem 386:987–997CrossRefGoogle Scholar
  11. 11.
    Martínez Bueno MJ, Agüera A, Gómez MJ, Hernando MD, García-Reyes JF, Fernández-Alba AR (2007) Anal Chem 79:9372–9384CrossRefGoogle Scholar
  12. 12.
    Krauss M, Hollender J (2008) Anal Chem 80:834–842CrossRefGoogle Scholar
  13. 13.
    van Leerdam JA, Hogenboom AC, van der Kooi MME, de Voogt P (2009) Int J Mass Spectrom 282:99–107CrossRefGoogle Scholar
  14. 14.
    Loos R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G (2009) J Chromatogr A 1216:1126–1131CrossRefGoogle Scholar
  15. 15.
    Schmid Neset TS, Singer H, Longrée P, Bader H-P, Scheidegger R, Wittmer A, Andersson J (2010) Sci Total Environ (accepted)Google Scholar
  16. 16.
    Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Environ Sci Technol 43:7039–7046CrossRefGoogle Scholar
  17. 17.
    Nielen MWF, van Engelen MC, Zuiderent R, Ramaker R (2007) Anal Chim Acta 586:122–129CrossRefGoogle Scholar
  18. 18.
    Li X, Brownawell BJ (2009) Anal Chem 81:7926–7935CrossRefGoogle Scholar
  19. 19.
    Kind T, Fiehn O (2006) BMC Bioinformatics 7:234CrossRefGoogle Scholar
  20. 20.
    Thurman EM (2006) J Mass Spectrom 41:1287–1297CrossRefGoogle Scholar
  21. 21.
    Ibáñez M, Sancho JV, Pozo ÓJ, Hernández F (2006) Anal Bioanal Chem 384:448–457CrossRefGoogle Scholar
  22. 22.
    Harir M, Frommberger M, Gaspar A, Martens D, Kettrup A, El Azzouzi M, Schmitt-Kopplin P (2007) Anal Bioanal Chem 389:1459–1467CrossRefGoogle Scholar
  23. 23.
    Ferrer I, Thurman EM (2003) Trends Anal Chem 22:750–756CrossRefGoogle Scholar
  24. 24.
    Bobeldijk I, Vissers JPC, Kearney G, Major H, van Leerdam JA (2001) J Chromatogr A 929:63–74CrossRefGoogle Scholar
  25. 25.
    Ibáñez M, Sancho JV, Pozo ÓJ, Niessen WMA, Hernández F (2005) Rapid Commun Mass Spectrom 19:169–178CrossRefGoogle Scholar
  26. 26.
    Ibáñez M, Sancho JV, Hernández F, McMillan D, Rao R (2008) Trends Anal Chem 27:481–489CrossRefGoogle Scholar
  27. 27.
    Kind T, Fiehn O (2007) BMC Bioinformatics 8:105CrossRefGoogle Scholar
  28. 28.
    Erve JCL, Gu M, Wang Y, DeMaio W, Talaat RE (2009) J Am Soc Mass Spectrom 20:2058–2069CrossRefGoogle Scholar
  29. 29.
    Liao W, Draper WM, Perera SK (2008) Anal Chem 80:7765–7777CrossRefGoogle Scholar
  30. 30.
    Hill DW, Kertesz TM, Fontaine D, Friedman R, Grant DF (2008) Anal Chem 80:5574–5582CrossRefGoogle Scholar
  31. 31.
    Hollender J, Singer H, Hernando D, Kosjek T, Heath E (2009) In: Kassinos D, Kümmerer K, Bester K (eds) Xenobiotics in the urban water cycle: mass flows, environmental processes, mitigation and treatment strategies, Springer, Dordrecht, pp 195–211Google Scholar
  32. 32.
    Buttiglieri G, Peschka M, Frömel T, Müller J, Malpei F, Seel P, Knepper TP (2009) Water Res 43:2865–2873CrossRefGoogle Scholar
  33. 33.
    Godejohann M, Heintz L, Daolio C, Berset J-D, Muff D (2009) Environ Sci Technol 43:7055–7061CrossRefGoogle Scholar
  34. 34.
    European Commision (2002) Commision Decision 2002/657/EC implementing Council Directive 96/23/EC concerning performance of analytical methods and the interpretation of results. Off J Eur Commun L221/8Google Scholar
  35. 35.
    Hernández F, Ibánez M, Sancho JV, Pozo SJ (2004) Anal Chem 76:4349–4357CrossRefGoogle Scholar
  36. 36.
    Kauppila TJ, Kuuranne T, Meurer EC, Eberlin MN, Kotiaho T, Kostiainen R (2002) Anal Chem 74:5470–5479CrossRefGoogle Scholar
  37. 37.
    Chalcraft KR, Lee R, Mills C, Britz-McKibbin P (2009) Anal Chem 81:2506–2515CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martin Krauss
    • 1
  • Heinz Singer
    • 1
  • Juliane Hollender
    • 1
  1. 1.EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland

Personalised recommendations