Advertisement

Analytical and Bioanalytical Chemistry

, Volume 397, Issue 2, pp 655–664 | Cite as

Modification of tricine–SDS–PAGE for online and offline analysis of phosphoproteins by ICP-MS

  • Syed R. Haider
  • Helen J. Reid
  • Barry L. Sharp
Original Paper

Abstract

This study describes a modification to tricine sodium dodecyl sulphate polyacrylamide gel electrophoresis to make it more effective for the separation of low molecular mass proteins and for coupling with inductively coupled plasma mass spectrometry (ICP-MS). The modified method employs low-percentage polyacrylamide gels (7–10%) (w/v) and low reagent concentrations that provide efficient separations, good quantitation and low matrix levels that are compatible with ICP-MS. Using phosphopeptides as a model system, and offline analysis, we obtained recoveries of 73% (w/v) in a 9% gel compared with 55% in a conventional 16% gel. Online coupling was achieved by modification of a standard commercially available gel electroelution apparatus and casting of the gel into a 7.3-cm-long tube. Online separation of a digest of β-casein was demonstrated with recovery of the mono- and tetraphosphopeptides, which were identified by comparison with peptide standards. A mass balance study with the standards yielded recoveries of 95% for tetraphosphopeptides and 48% for monophosphopeptides. The factors affecting the separations and recoveries are discussed in detail. The detection limits for 10-µL samples of the mono- and tetraphosphopeptides were 0.7 µM (7 pmol) and 0.2 µM (2 pmol) respectively.

Keywords

Inductively coupled plasma mass spectrometry Tricine sodium dodecyl sulphate polyacrylamide gel electrophoresis Phosphopeptide Quantification Online coupling Gel percentage 

References

  1. 1.
    Graves JD, Krebs EG (1999) Pharmacol Ther 82:111–121CrossRefGoogle Scholar
  2. 2.
    Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Brain Res Rev 33:95–130CrossRefGoogle Scholar
  3. 3.
    Greengard P, Allen PB, Nairn AC (1999) Neuron 23:435–447CrossRefGoogle Scholar
  4. 4.
    Wind M, Wesch H, Lehmann WD (2001) Anal Chem 73:3006–3010CrossRefGoogle Scholar
  5. 5.
    Bandura DR, Baranov V, Tanner SD (2002) Anal Chem 74:1497–1502CrossRefGoogle Scholar
  6. 6.
    Pereira-Navaza A, Encinar JR, Carrascal M, Abian J, Sanz-Medel A (2008) Anal Chem 80:1777–1787CrossRefGoogle Scholar
  7. 7.
    Wind M, Wegener A, Eisenmenger A, Kellner R, Lehmann WD (2003) Angew Chem Int Ed 42:3425–3427CrossRefGoogle Scholar
  8. 8.
    Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Mol Cell Proteomics 4:873–886CrossRefGoogle Scholar
  9. 9.
    Ammann AA (2007) J Mass Spectrom 42:419–427CrossRefGoogle Scholar
  10. 10.
    Sanz-Medel A, Montes-Bayón M, Fernández de la Campa M del R, Encinar JR, Bettmer J (2008) Anal Bioanal Chem 390:3–16Google Scholar
  11. 11.
    Bettmer J, Montes-Bayón M, Encinar JR, Fernández-Sánchez ML, Fernández de la Campa M del R, Sanz-Medel A (2009) J Proteom 72:989–1005Google Scholar
  12. 12.
    Posewitz MC, Tempst P (1999) Anal Chem 71:2883–2892CrossRefGoogle Scholar
  13. 13.
    Hann S, Koellensperger G, Obinger C, Furtmueller PG, Stingeder G (2004) J Anal At Spectrom 19:74CrossRefGoogle Scholar
  14. 14.
    Moore JC (1964) J Polym Sci A 2:835Google Scholar
  15. 15.
    Szpunar J, Lobinski R, Prange A (2003) Appl Spectrosc 57:102–112CrossRefGoogle Scholar
  16. 16.
    Schägger H (2006) Nature 1:16–22Google Scholar
  17. 17.
    Hames BD (1998) Gel electrophoresis of proteins. Oxford University Press, New YorkGoogle Scholar
  18. 18.
    Laemmli UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  19. 19.
    Takagi T, Kubo K (1979) Biochem Biophys Acta 578:68–75Google Scholar
  20. 20.
    Anderson BL, Berry RW, Telser A (1983) Anal Biochem 132:365–375CrossRefGoogle Scholar
  21. 21.
    Swank RT, Munkres KD (1971) Anal Biochem 39:462–477CrossRefGoogle Scholar
  22. 22.
    Okajima T, Tanabe T, Yasuda T (1993) Anal Biochem 211:293–300CrossRefGoogle Scholar
  23. 23.
    Bothe D, Simonis M, Dohren H (1985) Anal Biochem 151:49–54CrossRefGoogle Scholar
  24. 24.
    Schägger H, von Jagow G (1987) Anal Biochem 166:368–379CrossRefGoogle Scholar
  25. 25.
    Yim SK, Ahn T, Kim JK, Yun CH (2002) Anal Biochem 305:279–281CrossRefGoogle Scholar
  26. 26.
    Prange A, Pröfrock D (2005) Anal Bioanal Chem 383:372–389CrossRefGoogle Scholar
  27. 27.
    Marshall P, Heudi O, Bains S, Freeman HN, Abou-Shakra F, Reardon K (2002) Analyst 127:459–461CrossRefGoogle Scholar
  28. 28.
    Wind M, Feldmann I, Jakubowski N, Lehmann WD (2003) Electrophoresis 7:1276–1280CrossRefGoogle Scholar
  29. 29.
    Raab A, Pioselli B, Munro C, Thomas-Oates J, Feldmann J (2009) Electrophoresis 30:303–314CrossRefGoogle Scholar
  30. 30.
    Wind M, Eisenmenger A, Wesch H, Lehmann WD (2002) J Anal At Spectrom 17:21–26CrossRefGoogle Scholar
  31. 31.
    Ellis J, Del Castillo E, Montes-Bayon M, Grimm R, Clark JF, Pyne-Geithman G, Wilbur S, Caruso JA (2008) J Proteome Res 7:3747–3754CrossRefGoogle Scholar
  32. 32.
    Wind M, Edler M, Jakubowski N, Linscheid M, Wesch H, Lehmann WD (2001) Anal Chem 73:29–35CrossRefGoogle Scholar
  33. 33.
    Wang M, Feng W, Zhao Y, Chai Z (2009) Mass Spectrom Rev. doi: 10.1002/mas.20241 Google Scholar
  34. 34.
    Czerwenka C, Lämmerhofer M, Lindner W (2003) J Pharm Biomed Anal 30:1789–1800CrossRefGoogle Scholar
  35. 35.
    Brüchert W, Bettmer J (2005) J Anal Chem 77:5072–5075CrossRefGoogle Scholar
  36. 36.
    Helfrich A, Brüchert W, Bettmer J (2006) J Anal At Spectrom 21:431–434CrossRefGoogle Scholar
  37. 37.
    Anorbe MG, Messerschmidt J, Feldmann I, Jakubowski N (2007) J Anal At Spectrom 22:917–924CrossRefGoogle Scholar
  38. 38.
    Helfrich A, Bettmer J (2007) J Anal At Spectrom 22:1296–1299CrossRefGoogle Scholar
  39. 39.
    Brüchert W, Helfrich A, Zinn N, Klimach T, Breckheimer M, Chen H, Lai S, Hoffmann T, Bettmer J (2007) J Anal Chem 79:1714–1719CrossRefGoogle Scholar
  40. 40.
    Sutton KL, Caruso JA (1999) J Cromatogr 856:243–248CrossRefGoogle Scholar
  41. 41.
    Yanes EG, Miller-Ihli NJ (2005) Spectrochim Acta Part B 60:555–561CrossRefGoogle Scholar
  42. 42.
    Ponce de Leon CA, Montes-Bayon M, Caruso JA (2002) J Chromatogr A 974:1–21CrossRefGoogle Scholar
  43. 43.
    Szpunar J, Lobinski R (1999) Pure Appl Chem 71:899–918CrossRefGoogle Scholar
  44. 44.
    Lobinski R, Chassaigne H, Szpunar J (1998) Talanta 46:271–289CrossRefGoogle Scholar
  45. 45.
    Dong J, Zhou H, Wu R, Ye M, Zou H (2007) J Sep Sci 30:2917–2920CrossRefGoogle Scholar
  46. 46.
    Makowski GS, Ramsby ML (1993) Anal Biochem 212:283–285CrossRefGoogle Scholar
  47. 47.
    Fornstedt T, Zhong G, Guiochon G (1996) J Chromatogr A 741:1–12CrossRefGoogle Scholar
  48. 48.
    Pröfrock D, Prange A (2009) J Chromatogr A 1216:6706–6715CrossRefGoogle Scholar
  49. 49.
    Szantai E, Guttman A (2008) In: Landers JP (ed) Handbook of capillary and microchip electrophoresis and associated microtechniques, 3rd edn. New York, CRCGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Syed R. Haider
    • 1
  • Helen J. Reid
    • 1
  • Barry L. Sharp
    • 1
  1. 1.Centre for Analytical Science, Department of ChemistryLoughborough UniversityLeicestershireUK

Personalised recommendations