Analytical and Bioanalytical Chemistry

, Volume 397, Issue 2, pp 587–601 | Cite as

Novel molecular tumour classification using MALDI–mass spectrometry imaging of tissue micro-array

  • Marie-Claude Djidja
  • Emmanuelle Claude
  • Marten F. Snel
  • Simona Francese
  • Peter Scriven
  • Vikki Carolan
  • Malcolm R. Clench
Original Paper


The development of tissue micro-array (TMA) technologies provides insights into high-throughput analysis of proteomics patterns from a large number of archived tumour samples. In the work reported here, matrix-assisted laser desorption/ionisation–ion mobility separation–mass spectrometry (MALDI–IMS–MS) profiling and imaging methodology has been used to visualise the distribution of several peptides and identify them directly from TMA sections after on-tissue tryptic digestion. A novel approach that combines MALDI–IMS–MSI and principal component analysis–discriminant analysis (PCA–DA) is described, which has the aim of generating tumour classification models based on protein profile patterns. The molecular classification models obtained by PCA–DA have been validated by applying the same statistical analysis to other tissue cores and patient samples. The ability to correlate proteomic information obtained from samples with known and/or unknown clinical outcome by statistical analysis is of great importance, since it may lead to a better understanding of tumour progression and aggressiveness and hence improve diagnosis, prognosis as well as therapeutic treatments. The selectivity, robustness and current limitations of the methodology are discussed.


Tumour classification Tissue micro-array Pancreatic cancer MALDI imaging Ion mobility separation 

Supplementary material

216_2010_3554_MOESM1_ESM.pdf (641 kb)
ESM 1(PDF 640 kb)


  1. 1.
    Wang J, Bø TH, Jonassen I et al (2003) Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics 4:60CrossRefGoogle Scholar
  2. 2.
    Demichelis F, Magni P, Piergiorgi P et al (2006) A hierarchical naïve Bayes model for handling sample heterogeneity in classification problems: an application to tissue microarrays. BMC Bioinformatics 7:514CrossRefGoogle Scholar
  3. 3.
    Abd El-Rehim DM, Ball G, Pinder SE et al (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116:340–350CrossRefGoogle Scholar
  4. 4.
    Battifora H, Mehta P (1990) The checkerboard tissue block. An improved multitissue control block. Lab Invest 63:722–724Google Scholar
  5. 5.
    Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847CrossRefGoogle Scholar
  6. 6.
    Rosen DG, Huang X, Deavers MT et al (2004) Validation of tissue microarray technology in ovarian carcinoma. Mod Pathol 17:790–797CrossRefGoogle Scholar
  7. 7.
    Kleiner HE, Krishnan P, Tubbs J et al (2009) Tissue microarray analysis of eIF4E and its downstream effector proteins in human breast cancer. J Exp Clin Cancer Res 28:5CrossRefGoogle Scholar
  8. 8.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760CrossRefGoogle Scholar
  9. 9.
    Chaurand P, Schwartz SA, Caprioli RM (2004) Assessing protein patterns in disease using imaging mass spectrometry. J Proteome Res 3:245–252CrossRefGoogle Scholar
  10. 10.
    Stoeckli M, Staab D, Schweitzer A et al (2007) Imaging of a beta-peptide distribution in whole-body mice sections by MALDI mass spectrometry. J Am Soc Mass Spectrom 18:1921–1924CrossRefGoogle Scholar
  11. 11.
    Chaurand P, Sanders ME, Jensen RA, Caprioli RM (2004) Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am J Pathol 165:1057–1068Google Scholar
  12. 12.
    Reyzer ML, Caldwell RL, Dugger TC et al (2004) Early changes in protein expression detected by mass spectrometry predict tumor response to molecular therapeutics. Cancer Res 64:9093–9100CrossRefGoogle Scholar
  13. 13.
    Groseclose MR, Massion PP, Chaurand P, Caprioli RM (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8:3715–3724CrossRefGoogle Scholar
  14. 14.
    Djidja M, Carolan V, Loadman PM, Clench MR (2008) Method development for protein profiling in biological tissues by matrix-assisted laser desorption/ionisation mass spectrometry imaging. Rapid Commun Mass Spectrom 22:1615–1618CrossRefGoogle Scholar
  15. 15.
    Trim PJ, Atkinson SJ, Princivalle AP et al (2008) Matrix-assisted laser desorption/ionisation mass spectrometry imaging of lipids in rat brain tissue with integrated unsupervised and supervised multivariant statistical analysis. Rapid Commun Mass Spectrom 22:1503–1509CrossRefGoogle Scholar
  16. 16.
    Deininger SO, Ebert MP, Fütterer A et al (2008) MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J Proteome Res 7:5230–5236CrossRefGoogle Scholar
  17. 17.
    Lemaire R, Desmons A, Tabet JC et al (2007) Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J Proteome Res 6:1295–1305CrossRefGoogle Scholar
  18. 18.
    Djidja MC, Francese S, Loadman PM et al (2009) Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections. Proteomics 9:2750–2763CrossRefGoogle Scholar
  19. 19.
    Armstrong DW, Zhang LK, He L, Gross ML (2001) Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 73:3679–3686CrossRefGoogle Scholar
  20. 20.
    Lemaire R, Tabet JC, Ducoroy P et al (2006) Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem 78:809–819CrossRefGoogle Scholar
  21. 21.
    Pringle SD, Giles K, Wildgoose JL et al (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261:1–12CrossRefGoogle Scholar
  22. 22.
    Riba-Garcia I, Giles K, Bateman RH, Gaskell SJ (2008) Evidence for structural variants of a- and b-type peptide fragment ions using combined ion mobility/mass spectrometry. J Am Soc Mass Spectrom 19:609–613CrossRefGoogle Scholar
  23. 23.
    Xia Q, Wang HX, Wang J et al (2004) Nano-ESI–MS/MS identification on differentiation-associated proteins in M1 mouse myeloid leukemia cells induced by IL-6. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 26:483–487Google Scholar
  24. 24.
    Hoogerbrugge R, Willig SJ, Kistemaker PG (1983) Discriminant analysis by double stage principal component analysis. Anal Chem 55:1710–1712CrossRefGoogle Scholar
  25. 25.
    Defernez M, Kemsley EK (1997) The use and misuse of chemometrics for treating classification problems. TrAC Trends Anal Chem 16:216–221CrossRefGoogle Scholar
  26. 26.
    Neoptolemos JP, Dunn JA, Stocken DD et al (2001) Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet 358:1576–1585CrossRefGoogle Scholar
  27. 27.
    Armstrong T, Packham G, Murphy LB et al (2004) Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 10:7427–7437CrossRefGoogle Scholar
  28. 28.
    Ariapart P, Bergstedt-Lindqvist S, van Harmelen V et al (2002) Resection of pancreatic cancer normalizes the preoperative increase of tumor necrosis factor alpha gene expression. Pancreatology 2:491–494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marie-Claude Djidja
    • 1
  • Emmanuelle Claude
    • 2
  • Marten F. Snel
    • 3
  • Simona Francese
    • 1
  • Peter Scriven
    • 4
  • Vikki Carolan
    • 1
  • Malcolm R. Clench
    • 1
  1. 1.Biomedical Research CentreSheffield Hallam UniversitySheffieldUK
  2. 2.Waters CorporationManchesterUK
  3. 3.Lysosomal Diseases Research Unit, SA PathologyNorth AdelaideAustralia
  4. 4.Academic Surgical Oncology UnitUniversity of SheffieldSheffieldUK

Personalised recommendations