Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 77–86 | Cite as

Exploiting automatic on-line renewable molecularly imprinted solid-phase extraction in lab-on-valve format as front end to liquid chromatography: application to the determination of riboflavin in foodstuffs

  • Hugo M. Oliveira
  • Marcela A. SegundoEmail author
  • José L. F. C. Lima
  • Manuel Miró
  • Victor Cerdà
Original Paper


In the present work, it is proposed, for the first time, an on-line automatic renewable molecularly imprinted solid-phase extraction (MISPE) protocol for sample preparation prior to liquid chromatographic analysis. The automatic microscale procedure was based on the bead injection (BI) concept under the lab-on-valve (LOV) format, using a multisyringe burette as propulsion unit for handling solutions and suspensions. A high precision on handling the suspensions containing irregularly shaped molecularly imprinted polymer (MIP) particles was attained, enabling the use of commercial MIP as renewable sorbent. The features of the proposed BI-LOV manifold also allowed a strict control of the different steps within the extraction protocol, which are essential for promoting selective interactions in the cavities of the MIP. By using this on-line method, it was possible to extract and quantify riboflavin from different foodstuff samples in the range between 0.450 and 5.00 mg L−1 after processing 1,000 µL of sample (infant milk, pig liver extract, and energy drink) without any prior treatment. For milk samples, LOD and LOQ values were 0.05 and 0.17 mg L−1, respectively. The method was successfully applied to the analysis of two certified reference materials (NIST 1846 and BCR 487) with high precision (RSD < 5.5%). Considering the downscale and simplification of the sample preparation protocol and the simultaneous performance of extraction and chromatographic assays, a cost-effective and enhanced throughput (six determinations per hour) methodology for determination of riboflavin in foodstuff samples is deployed here.


Schematic representation of the manifold for determination of riboflavin in foodstuff. LOV lab-on-valve, MS multisyringe, HPLC high-performance liquid chromatography, Si syringe, Vi three-way commutation valve ( position off, solid line position on), A air, CS conditioning solvent (50% (v/v) MeOH/H2O), BS bead suspension in conditioning solvent, C carrier solution (H2O), D diluent (H2O), W waste, CC central channel, EL eluent (50% (v/v) MeOH/H2O+1% (v/v) CH3COOH), B channel for bead discarding, Sa sample/standard solution, HC holding coil, L1 connection tubing (8 cm), L2 connection tubing (44 cm), P chromatographic pump, IV injection valve, MC monolithic chromatographic column, λ diode array detector


Solid-phase extraction Molecularly imprinted polymer Flow analysis Lab-on-valve Riboflavin Foodstuff 



This work was financially supported by FCT through project PTDC/AAC-AMB/104882/2008, by Spanish Ministry of Education and Science through project CTQ2007-64331, and by Integrated Action no E-48/09. Hugo M. Oliveira thanks Fundação para a Ciência e Tecnologia (FCT) and FSE (III Quadro Comunitário) for the PhD grant SFRH/BD/22494/2005. The authors thank Dr Ferran Hierro from the Microscopy Laboratory at the University of the Balearic Islands for providing the electron microscopy picture of the MIP material and Mr. Marcelo Vaz Osório for technical assistance.

Supplementary material

216_2010_3522_MOESM1_ESM.pdf (484 kb)
ESM1 (PDF 483 kb)


  1. 1.
    Chen Y, Guo ZP, Wang XY, Qiu CG (2008) J Chromatogr A 1184:191–219CrossRefGoogle Scholar
  2. 2.
    Hyötyläinen T (2009) Anal Bioanal Chem 394:743–758CrossRefGoogle Scholar
  3. 3.
    Pichon V (2007) J Chromatogr A 1152:41–53CrossRefGoogle Scholar
  4. 4.
    He CY, Long YY, Pan JL, Li K, Liu F (2007) J Biochem Biophys Methods 70:133–150CrossRefGoogle Scholar
  5. 5.
    Mahony JO, Nolan K, Smyth MR, Mizaikoff B (2005) Anal Chim Acta 534:31–39CrossRefGoogle Scholar
  6. 6.
    Sellergren B (1994) Anal Chem 66:1578–1582CrossRefGoogle Scholar
  7. 7.
    Theodoridis G, Manesiotis P (2002) J Chromatogr A 948:163–169CrossRefGoogle Scholar
  8. 8.
    Pichon V, Haupt K (2006) J Liq Chromatogr Relat Technol 29:989–1023CrossRefGoogle Scholar
  9. 9.
    Manesiotis P, Hall AJ, Courtois J, Irgum K, Sellergren B (2005) Angewandte Chem-Intern Ed 44:3902–3906CrossRefGoogle Scholar
  10. 10.
    Hyötyläinen T (2007) J Chromatogr A 1153:14–28CrossRefGoogle Scholar
  11. 11.
    Dias ACB, Figueiredo EC, Grassi V, Zagatto EAG, Arruda MAZ (2008) Talanta 76:988–996CrossRefGoogle Scholar
  12. 12.
    Theodoridis GA, Zacharis CK, Voulgaropoulos AN (2007) J Biochem Biophys Methods 70:243–252CrossRefGoogle Scholar
  13. 13.
    Ruzicka J (2000) Analyst 125:1053–1060CrossRefGoogle Scholar
  14. 14.
    Miró M, Hartwell SK, Jakmunee J, Grudpan K, Hansen EH (2008) Trac-Trends Anal Chem 27:749–761CrossRefGoogle Scholar
  15. 15.
    Quintana JB, Miró M, Estela JM, Cerdà V (2006) Anal Chem 78:2832–2840CrossRefGoogle Scholar
  16. 16.
    Quintana JB, Boonjob W, Miró M, Cerdà V (2009) Anal Chem 81:4822–4830CrossRefGoogle Scholar
  17. 17.
    Sanchez BA, Capote FP, Jimenez JR, de Castro MDL (2008) J Chromatogr A 1207:46–54CrossRefGoogle Scholar
  18. 18.
    Hu L, Yang X, Wang C, Yuan H, Xiao D (2007) J Chromatogr B 856:245–251CrossRefGoogle Scholar
  19. 19.
    Kadara RO, Haggett BGD, Birch BJ (2006) J Agric Food Chem 54:4921–4924CrossRefGoogle Scholar
  20. 20.
    Albalá-Hurtado S, Veciana-Nogués MT, Izquierdo-Pulido M, Mariné-Font A (1997) J Chromatogr A 778:247–253CrossRefGoogle Scholar
  21. 21.
    Tang X, Cronin DA, Brunton NP (2006) J Food Compos Anal 19:831–837CrossRefGoogle Scholar
  22. 22.
    Miró M, Jonczyk S, Wang JH, Hansen EH (2003) J Anal Atomic Spectrom 18:89–98CrossRefGoogle Scholar
  23. 23.
    Segundo MA, Magalhães LM (2006) Anal Sci 22:3–8CrossRefGoogle Scholar
  24. 24.
    Wang JH, Hansen EH, Miró M (2003) Anal Chim Acta 499:139–147CrossRefGoogle Scholar
  25. 25.
    Song S, Peng C (2008) J Dispersion Sci Technol 29:1367–1372CrossRefGoogle Scholar
  26. 26.
    Sellergren B, Manesiotis P, Hall AJ, Boerje S, Panagiotis M (2004) Patent number WO 2004/067578 A1, World Intellectual Property OrganizationGoogle Scholar
  27. 27.
    MIP Technologies AB/SUPELCO (2006) SupelMIP™ SPE—Riboflavin (Vitamin B2),, accessed on 2009/12/04
  28. 28.
    Manesiotis P, Borrelli C, Aureliano CSA, Svensson C, Sellergren B (2009) J Mater Chem 19:6185–6193CrossRefGoogle Scholar
  29. 29.
    Kolev S, McKelvie I (Eds.) Advances in Flow Injection Analysis and Related Techniques, Elsevier, Amsterdam, 2008Google Scholar
  30. 30.
    Boqué R, Van der Heyden Y (2009) LC GC Eur 22:82–85Google Scholar
  31. 31.
    Gao YL, Guo F, Gokavi S, Chow A, Sheng QH, Guo MR (2008) Food Chem 110:769–776CrossRefGoogle Scholar
  32. 32.
    Zandomeneghi M, Carbonaro L, Zandomeneghi G (2007) J Agric Food Chem 55:5990–5994CrossRefGoogle Scholar
  33. 33.
    Vinas P, Balsalobre N, Lopez-Erroz C, Hernandez-Cordoba M (2004) J Agric Food Chem 52:1789–1794CrossRefGoogle Scholar
  34. 34.
    Zougagh M, Rios A (2008) Electrophoresis 29:3213–3219Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hugo M. Oliveira
    • 1
  • Marcela A. Segundo
    • 1
    Email author
  • José L. F. C. Lima
    • 1
  • Manuel Miró
    • 2
  • Victor Cerdà
    • 2
  1. 1.REQUIMTE, Serviço de Química-Física, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
  2. 2.Department of Chemistry, Faculty of SciencesUniversity of the Balearic IslandsPalmaSpain

Personalised recommendations