Analytical and Bioanalytical Chemistry

, Volume 397, Issue 4, pp 1397–1415

In vitro and in vivo imaging with quantum dots

Review

Abstract

Quantum dots (QDs), also named semiconductor nanocrystals, have initiated a new realm of bioscience by combining nanomaterials with biology, which will profoundly influence future biological and biomedical research. In this review, we describe the extraordinary optical properties of QDs and developments in methods for their synthesis. We focus on fluorescent imaging with QDs both in vitro and in vivo, and the cytotoxicity of QDs and potential barriers to their use in practical biomedical applications. Finally, we provide insights into improvements aimed at decreasing the cytotoxicity of QDs and the future outlook of QD applications in biomedical fields.

Figure

The unique tunable optical and chemical properties of QDs have been exploited in a growing array of biomedical applications including clinical diagnostics and molecular, cellular, and tumor imaging

Keywords

Quantum dots In vitro In vivo Cytotoxicity Doped quantum dots 

References

  1. 1.
    Medintz I, Uyeda H, Goldman E, Mattoussi H (2005) Nature Mater 4:435–446Google Scholar
  2. 2.
    Klostranec JM, Chan WCW (2006) Adv Mater 18:1953–1964Google Scholar
  3. 3.
    Henglein A (1989) Chem Rev 89:1861–1873Google Scholar
  4. 4.
    Alivisatos AP (1996) Science 271:933–937Google Scholar
  5. 5.
    Nirmal M, Brus L (1999) Acc Chem Res 32:407–414Google Scholar
  6. 6.
    Alivisatos AP (1997) Endeavour 21:56–60Google Scholar
  7. 7.
    Alivisatos AP, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME (1998) Adv Mater 10:1297–1336Google Scholar
  8. 8.
    Smith AM, Gao X, Nie S (2004) Photochem Photobiol 80:377–385Google Scholar
  9. 9.
    Qu LH, Peng XG (2002) J Am Chem Soc 124:2049–2055Google Scholar
  10. 10.
    Zhong XH, Feng YY, Knoll W, Han MY (2003) J Am Chem Soc 125:13559–13563Google Scholar
  11. 11.
    Bailey RE, Nie SM (2003) J Am Chem Soc 125:7100–7106Google Scholar
  12. 12.
    Kim S, Fisher B, Eisler HJ, Bawendi M (2003) J Am Chem Soc 125:11466–11467Google Scholar
  13. 13.
    Wehrenberg BL, Wang CJ, Guyot-Sionnest P (2002) J Phys Chem B 106:10634–10640Google Scholar
  14. 14.
    Sukhanova A, Venteo L, Devy J, Artemyev M, Oleinikov V, Pluot M, Nabiev I (2002) Lab Invest 82:1259–1261Google Scholar
  15. 15.
    Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen JHM, Nabiev I (2004) Anal Biochem 324:60–67Google Scholar
  16. 16.
    Wargnier R, Baranov A, Maslov V, Stsiapura V, Artemyev M, Pluot M, Sukhanova A, Nabiev I (2004) Nano Lett 4:451–457Google Scholar
  17. 17.
    Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP (2003) Nat Biotechnol 21:41–46Google Scholar
  18. 18.
    Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Nat Biotechnol 22:198–203Google Scholar
  19. 19.
    Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nat Mater 2:630–638Google Scholar
  20. 20.
    Peng X (2009) Nano Res 2:425–447Google Scholar
  21. 21.
    Efros AL (1982) Sov Phys Semicond 16:772–775Google Scholar
  22. 22.
    Ekimov AI, Onushchenko AA (1982) Sov Phys Semicond 16:775–778Google Scholar
  23. 23.
    Guo J, Yang W, Wang C (2005) J Phys Chem B 109:17467–17473Google Scholar
  24. 24.
    He Y, Lu HT, Sai LM, Lai WY, Fan QL, Wang LH, Huang W (2006) J Phys Chem B 110:13352–13356Google Scholar
  25. 25.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715Google Scholar
  26. 26.
    Hines MA, Guyot-Sionnest P (1996) J Phys Chem 100:468–471Google Scholar
  27. 27.
    Murray XG, Norris DJ, Bawendi MG (1997) J Am Chem Soc 119:7019–7029Google Scholar
  28. 28.
    Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) J Phys Chem B 101:9463–9475Google Scholar
  29. 29.
    Tian YC, Newton T, Kotov NA, Guldi DM, Fendler JH (1996) J Phys Chem 100:8927–8939Google Scholar
  30. 30.
    Peng ZA, Peng X (2001) J Am Chem Soc 123:183–184Google Scholar
  31. 31.
    Hines MA, Guyot-Sionnest P (1998) J Phys Chem B 102:3655–3657Google Scholar
  32. 32.
    Peng X, Mann L, Wickham J, Kadvanish A, Alivisatos AP (2000) Nature 404:59Google Scholar
  33. 33.
    Nann T, Riegler J (2002) Chem Eur J 8:4791–4795Google Scholar
  34. 34.
    Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) J Phys Chem B 105:2260–2263Google Scholar
  35. 35.
    Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Nano Lett 1:207–211Google Scholar
  36. 36.
    Qu L, Peng ZA, Peng XG (2002) Nano Lett 1:333–337Google Scholar
  37. 37.
    Smith AM, Ruan G, Rhyner MN, Nie S (2006) Ann Biomed Eng 34:3–14Google Scholar
  38. 38.
    Correa-Duarte MA, Kobayashi Y, Caruso RA, Liz-Marzán LM (2001) J Nanosci Nanotech 1:95–100Google Scholar
  39. 39.
    Reiss P, Bleuse J, Pron A (2002) Nano Lett 2:781–784Google Scholar
  40. 40.
    Zhang H, Zhou Z, Yang B (2003) J Phys Chem B 107:8–13Google Scholar
  41. 41.
    Rogach AL, Katsikas L, Kornowski A, Su D, Eychmüller A, Weller H (1996) Ber Bunsenges Phys Chem 100:1772–1778Google Scholar
  42. 42.
    Zhang H, Cui Z, Wang Y, Zhang K, Ji X, Lü C, Yang B, Gao MY (2003) Adv Mater 15:777–780Google Scholar
  43. 43.
    Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) J Am Chem Soc 122:12142–12150Google Scholar
  44. 44.
    Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) J Phys Chem B 106:7177–7185Google Scholar
  45. 45.
    Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W (2003) Adv Mater 15:1712–1715Google Scholar
  46. 46.
    Wang C, Ma Q, Su X (2008) J Nanosci Nanotech 8:4408–4414Google Scholar
  47. 47.
    Bao H, Gong Y, Li Z, Gao M (2004) Chem Mater 16:3853–3859Google Scholar
  48. 48.
    Wang C, Zhang H, Zhang J, Li M, Sun H, Yang B (2007) J Phys Chem C 111:2465–2469Google Scholar
  49. 49.
    Li L, Qian H, Ren J (2005) Chem Commun 528–530Google Scholar
  50. 50.
    He Y, Sai LM, Lu HT, Hu M, Lai WY, Fan QL, Wang LH, Huang W (2007) Chem Mater 19:359–365Google Scholar
  51. 51.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016Google Scholar
  52. 52.
    Chan WCW, Nie SM (1998) Science 281:2016–2018Google Scholar
  53. 53.
    Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Anderson GP (2002) J Am Chem Soc 124:6378–6382Google Scholar
  54. 54.
    Pathak S, Choi S-K, Arnheim N, Thompson ME (2001) J Am Chem Soc 123:4103–4104Google Scholar
  55. 55.
    Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL, Mattoussi H (2004) Anal Chem 76:684–688Google Scholar
  56. 56.
    Åkerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Proc Natl Acad Sci USA 99:12617–12621Google Scholar
  57. 57.
    Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L, McBride J, Wang Y, DeFelice LJ, Blakely RD (2002) J Am Chem Soc 124:4586–4594Google Scholar
  58. 58.
    Kim S, Lim YT, Soltesz EG, DeGrand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Nat Biotechnol 22:93–97Google Scholar
  59. 59.
    Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) Nat Biotechnol 22:969–976Google Scholar
  60. 60.
    Willard DM, Orden AV (2003) Nat Mater 2:575–576Google Scholar
  61. 61.
    Willard DM, Carillo LL, Jung J, Van Orden A (2001) Nano Lett 1:469–474Google Scholar
  62. 62.
    Lodish J, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J (1995) Molecular cell biology. Scientific American Books, New YorkGoogle Scholar
  63. 63.
    Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Nat Biotechnol 21:47–51Google Scholar
  64. 64.
    Hsieh SC, Wang FF, Lin CS, Chen YJ, Hung SC, Wang YJ (2006) Biomaterials 27:1656–1664Google Scholar
  65. 65.
    Chakraborty SK, Fitzpatrick JAJ, Phillippi JA, Andreko S, Waggoner AS, Bruchez MP, Ballou B (2007) Nano Lett 7:2618–2626Google Scholar
  66. 66.
    Byrne SJ, Corr SA, Rakovich TY, Gun’ko YK, Rakovich YP, Donegan JF, Mitchellc S, Volkov Y (2006) J Mater Chem 16:2896–2902Google Scholar
  67. 67.
    Pathak S, Cao E, Davidson MC, Jin S, Silva GA (2006) J Neurosci 26:1893–1895Google Scholar
  68. 68.
    Fan Z, Jin W (2007) Talanta 72:1114–1122Google Scholar
  69. 69.
    Weng J, Song X, Li L, Qian H, Chen K, Xu X, Cao C, Ren J (2006) Talanta 70:397–402Google Scholar
  70. 70.
    Liu HY, Vu TQ (2007) Nano Lett 7:1044–1049Google Scholar
  71. 71.
    Pinaud F, King D, Moore H-P, Weiss S (2004) J Am Chem Soc 126:6115–6123Google Scholar
  72. 72.
    Derfus AM, Chan WCW, Bhatia SN (2004) Adv Mater 16:961–966Google Scholar
  73. 73.
    Xue X, Pan J, Xie H, Wang J, Zhang S (2009) Talanta 77:1808–1813Google Scholar
  74. 74.
    Zheng Y, Gao S, Ying JY (2007) Adv Mater 19:376–380Google Scholar
  75. 75.
    Ruan G, Agrawal A, Marcus AI, Nie S (2007) J Am Chem Soc 129:14759–14766Google Scholar
  76. 76.
    Barua S, Rege K (2009) Small 5:370–376Google Scholar
  77. 77.
    Orndorff RL, Rosenthal SJ (2009) Nano Lett 9:2589–2599Google Scholar
  78. 78.
    Mobley JA, Leav I, Zielie P, Wotkowitz C, Evans J, Lam Y-W, L’Esperance BS, Jiang Z, Ho S-M (2003) Cancer Epidemiol Biomark Prev 12:775–783Google Scholar
  79. 79.
    Yezhelyev MV, Al-Hajj A, Morris C, Marcus AI, Liu T, Lewis M, Cohen C, Zrazhevskiy P, Simons JW, Rogatko A, Nie S, Gao X, O’Regan RM (2007) Adv Mater 19:3146–3151Google Scholar
  80. 80.
    Ko MH, Kim S, Kang WJ, Lee JH, Kang H, Moon SH, Hwang DW, Ko HY, Lee DS (2009) Small 5:1207–1212Google Scholar
  81. 81.
    Yong K-T, Ding H, Roy I, Law W-C, Bergey EJ, Maitra A, Prasad PN (2009) ACS Nano 3:502–510Google Scholar
  82. 82.
    Li F, Zhang Z, Peng J, Cui Z, Pang D, Li K, Wei H, Zhou Y, Wen J, Zhang X (2009) Small 5:718–726Google Scholar
  83. 83.
    Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) Biochem Biophys Res Commun 314:46–53Google Scholar
  84. 84.
    Estrada CR, Salanga M, Bielenberg DR, Harrell WB, Zurakowski D, Zhu X, Palmer MR, Freeman MR, Adam RM (2006) Cancer Res 66:3078–3086Google Scholar
  85. 85.
    Chu TC, Shieh F, Lavery LA, Levy M, Richards-Kortum R, Korgel BA, Ellington AD (2006) Biosens Bioelectron 21:1859–1866Google Scholar
  86. 86.
    Giepmans BNG, Deerinck TJ, Smarr BL, Jones YZ, Ellisman MH (2005) Nat Methods 2:743–749Google Scholar
  87. 87.
    Fountaine TJ, Wincovitch SM, Geho DH, Gargield SH, Pittaluga S (2006) Mod Pathol 19:1181–1191Google Scholar
  88. 88.
    Tholouli E, Hoyland JA, Di Vizio D, O’Connell F, MacDermott SA, Twomey D, Levenson R, Liu Yin JA, Golub TR, Loda M, Byers R (2006) Biochem Biophys Res Commun 348:628–636Google Scholar
  89. 89.
    Chan P, Yuen T, Ruf F, Gonzalez-Maeso J, Sealfon SC (2005) Nucleic Acids Res 33:e161–e169Google Scholar
  90. 90.
    Ferrara DE, Weiss D, Carnell PH, Vito RP, Vega D, Gao X, Nie S, Taylor WR (2006) Am J Physiol Regul Integr Comp Physiol 290:114–123Google Scholar
  91. 91.
    Orndorff RL, Warnement MR, Mason JN, Blakely RD, Rosenthal SJ (2008) Nano Lett 8:780–785Google Scholar
  92. 92.
    Chen C, Peng J, Xia H, Yang G, Wu Q, Chen L, Zeng L, Zhang Z, Pang D, Li Y (2009) Biomaterials. doi:10.1016/j.biomaterials.2009.02.010
  93. 93.
    Chou LYT, Fischer HC, Perrault SD, Chan WCW (2009) Anal Chem. doi:10.1021/ac900344a
  94. 94.
    Smith AM, Duan H, Mohs AM, Nie S (2008) Adv Drug Deliv Rev 60:1226–1240Google Scholar
  95. 95.
    Soltesz E, Kim S, Laurence R, DeGrand A, Parungo C, Dor D, Cohn L, Bawendi M, Frangioni J, Mihaljevic T (2005) Ann Thorac Surg 79:269–277Google Scholar
  96. 96.
    Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Bioconjug Chem 15:79–86Google Scholar
  97. 97.
    Fischer HC, Liu LC, Pang KS, Chan WCW (2006) Adv Funct Mater 16:1299–1305Google Scholar
  98. 98.
    Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Nat Biotechnol 25:1165–1170Google Scholar
  99. 99.
    Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) J Am Chem Soc 128:2526–2527Google Scholar
  100. 100.
    Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Science 300:1434–1436Google Scholar
  101. 101.
    Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Mol Imaging 2:50–64Google Scholar
  102. 102.
    Smith JD, Fisher GW, Waggoner AS, Campbell PG (2007) Microvasc Res 73:75–83Google Scholar
  103. 103.
    Parungo C, Ohnishi S, Kim S, Kim S, Laurence R, Soltesz E, Chen F, Colson Y, Cohn L, Bawendi M, Frangioni J (2005) J Thorac Cardiovasc Surg 129:844–850Google Scholar
  104. 104.
    Rosen AB, Kelly DJ, Schuldt AJT, Lu J, Potapova IA, Doronin SV, Robichaud KJ, Robinson RB, Rosen MR, Brink PR, Gaudette GR, Cohen IS (2007) Stem Cells 25:2128–2138Google Scholar
  105. 105.
    Yu XF, Chen LD, Li KY, Li Y, Xiao S, Luo X, Liu J, Zhou L, Deng YL, Pang DW, Wang QQ (2007) J Biomed Opt 12:014008Google Scholar
  106. 106.
    Cai WB, Shin DW, Chen K, Gheysens O, Cao QZ, Wang SX, Gambhir SS, Chen XY (2006) Nano Lett 6:669–676Google Scholar
  107. 107.
    Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK (2005) Nat Med 11:678–682Google Scholar
  108. 108.
    Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) Cancer Res 67:1138–1144Google Scholar
  109. 109.
    Sandros MG, Behrendt M, Maysinger D, Tabrizian M (2007) Adv Funct Mater 17:3724–3730Google Scholar
  110. 110.
    Liu W, Choi HS, Zimmer JP, Tanaka E, Frangioni JV, Bawendi M (2007) J Am Chem Soc 129:14530–14531Google Scholar
  111. 111.
    Ducongé F, Pons T, Pestourie C, Hérin L, Thézé B, Gombert K, Mahler B, Hinnen F, Kühnast B, Dollé F, Dubertret B, Tavitian B (2008) Bioconjug Chem 19:1921–1926Google Scholar
  112. 112.
    Law W-C, Yong K-T, Roy I, Ding H, Hu R, Zhao W, Prasad PN (2009) Small 5:1302–1310Google Scholar
  113. 113.
    Yong KT, Roy I, Ding H, Bergey EJ, Prasad PN (2009) Small. doi:10.1002/smll.200900547
  114. 114.
    Bhang SH, Won N, Lee T-J, Jin H, Nam J, Park J, Chung H, Park H, Sung Y-E, Hahn SK, Kim B-S, Kim S (2009) ACS Nano. doi:10.1021/nn900138d
  115. 115.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759–1762Google Scholar
  116. 116.
    Voura EB, Haiswal JK, Mattoussi H, Simon SM (2004) Nat Med 10:993–998Google Scholar
  117. 117.
    Yang L, Mao H, Wang YA, Cao Z, Peng X, Wang X, Duan H, Ni C, Yuan Q, Adams G, Smith MQ, Wood WC, Gao X, Nie S (2009) Small 5:235–243Google Scholar
  118. 118.
    Papagiannaros A, Levchenko T, Hartner W, Mongayt D, Torchilin V (2009) Nanomed Nanotechnol Biol Med 5:216–224Google Scholar
  119. 119.
    Hardman R (2006) Environ Health Perspect 14:165–172CrossRefGoogle Scholar
  120. 120.
    Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18Google Scholar
  121. 121.
    Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Nano Lett 4:2163–2169Google Scholar
  122. 122.
    Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz JA, Gaub HE (2005) Nano Lett 5:331–338Google Scholar
  123. 123.
    Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) J Mol Med 83:377–385Google Scholar
  124. 124.
    Kirchner C, Javier AM, Susha AS, Rogach AL, Kreft O, Sukhorukov GB (2005) Tanlata 67:486–491Google Scholar
  125. 125.
    Male KB, Lachance B, Hrapovic S, Sunahara G, Luong JHT (2008) Anal Chem 80:5487–5493Google Scholar
  126. 126.
    Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) Biomaterials 30:19–25Google Scholar
  127. 127.
    Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Small 2:1412Google Scholar
  128. 128.
    Lewinski N, Colvin V, Drezek R (2008) Small 4:26–49Google Scholar
  129. 129.
    Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Chem Biol 12:1227–1234Google Scholar
  130. 130.
    Hanaki KI, Momo A, Oku T, Komoto A, Maenosono S, Yamguchi Y (2003) Biochem Biophys Res Commun 302:496–501Google Scholar
  131. 131.
    Chen FQ, Gerion D (2004) Nano Lett 4:1827–1832Google Scholar
  132. 132.
    Pradhan N, Goorskey D, Thessing J, Peng X (2005) J Am Chem Soc 127:17586–17587Google Scholar
  133. 133.
    Pradhan N, Peng X (2007) J Am Chem Soc 129:3339–3347Google Scholar
  134. 134.
    Pradhan N, Battaglia DM, Liu Y, Peng X (2007) Nano Lett 7:312–317Google Scholar
  135. 135.
    Bhargava RN, Gallagher D, Hong X, Hurmikko A (1994) Phy Rev Lett 72:416–419Google Scholar
  136. 136.
    Yi G, Sun B, Yang F, Chen D (2001) J Mater Chem 11:2928–2929Google Scholar
  137. 137.
    Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T (2003) J Mater Chem 13:1853–1857Google Scholar
  138. 138.
    Suyver JF, Wuister SF, Kelly JJ, Meijerink A (2000) Phys Chem Chem Phys 2:5445–5448Google Scholar
  139. 139.
    Norris DJ, Yao N, Charnock FT, Kennedy TA (2001) Nano Lett 1:3–7Google Scholar
  140. 140.
    Wang C, Gao X, Ma Q, Su X (2009) J Mater Chem 19:7016–7022Google Scholar
  141. 141.
    Li L, Daou TJ, Texier I, Chi TTK, Liem NQ, Reiss P (2009) Chem Mater. doi:10.1021/cm900103b

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, College of ChemistryJilin UniversityChangchunChina

Personalised recommendations