Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 331–338 | Cite as

Screen-printed sensor for batch and flow injection potentiometric chromium(VI) monitoring

  • Raúl A. Sánchez-Moreno
  • M. Jesús Gismera
  • M. Teresa  Sevilla
  • Jesús R. Procopio
Original Paper

Abstract

A disposable screen-printed electrode was designed and evaluated for direct detection of chromium(VI) in batch and flow analysis. The carbon screen-printed electrode was modified with a graphite–epoxy composite. The optimal graphite–epoxy matrix contains 37.5% graphite powder, 12.5% diphenylcarbohydrazide, a selective compound for chromium(VI), and 50% epoxy resin. The principal analytical parameters of the potentiometric response in batch and flow analysis were optimized and calculated. The screen-printed sensor exhibits a response time of 20 ± 1 s. In flow analysis, the analytical frequency of sampling is 70 injections per hour using 0.1 M NaNO3 solution at pH 3 as the carrier, a flow rate of 2.5 mL·min−1, and an injection sample volume of 0.50 mL. The sensor shows potentiometric responses that are very selective for chromium(VI) ions and optimal detection limits in both static mode (2.1 × 10−7 M) and online analysis (9.4 × 10−7 M). The disposable potentiometric sensor was employed to determine toxicity levels of chromium(VI) in mineral, tap, and river waters by flow-injection potentiometry and batch potentiometry. Chromium(VI) determination was also carried out with successful results in leachates from municipal solid waste landfills.

Figure

Schematic diagram of the flow system and potentiometric response peaks to chromium (VI) of the screen-printed sensor

Keywords

Chromium(VI) Screen-printed electrode Graphite–epoxy composite Diphenylcarbohydrazide Flow-injection potentiometry Potentiometry 

References

  1. 1.
    Koryta J, Stulik K (1983) Ion selective electrodes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Bobacka J, Ivaska A, Lewenstam A (2008) Chem Rev 108:329–351CrossRefGoogle Scholar
  3. 3.
    Bakker E, Pretsch E (2007) Angew Chem Int Ed 46:5660–5668CrossRefGoogle Scholar
  4. 4.
    Lai CZ, Fierke MA, Stein A, Bühlmann P (2007) Anal Chem 79:4621–4626CrossRefGoogle Scholar
  5. 5.
    Khaled E, Mohamed GG, Awad T (2008) Sens Actuators B 135:74–80CrossRefGoogle Scholar
  6. 6.
    Pretsch E (2007) Trends Anal Chem 26:46–51CrossRefGoogle Scholar
  7. 7.
    Barek J, Fischer J, Navratil T, Peckova K, Yosypchuk B, Zima J (2007) Electroanalysis 19:2003–2014CrossRefGoogle Scholar
  8. 8.
    Navratil T, Barek J (2009) Crit Rev Anal Chem 39:131–147CrossRefGoogle Scholar
  9. 9.
    Navratil T, Barek J, Fasinova-Sebkova S (2009) Electroanalysis 21:309–315CrossRefGoogle Scholar
  10. 10.
    Barsan MM, Pinto EM, Florescu M, Brett CMA (2009) Anal Chim Acta 635:71–78CrossRefGoogle Scholar
  11. 11.
    Stozhko NY, Malakhova NA, Fyodorov MV, Brainina KZ (2008) J Solid State Electrochem 12:1219–1230CrossRefGoogle Scholar
  12. 12.
    Vissers B, Bohets H, Everaert J, Cool P, Vansant EF, Du Prez F, Kauffmann JM, Nagels LJ (2006) Electrochim Acta 51:5062–5069CrossRefGoogle Scholar
  13. 13.
    Fiol N, Torre F, Demeyere P, Florido A, Villaescusa I (2007) Sens Actuators B 122:187–194CrossRefGoogle Scholar
  14. 14.
    Khan AA (2008) Inamuddin, Akhtar T. Anal Sci 24:881–887CrossRefGoogle Scholar
  15. 15.
    Inamuddin, Alam MM (2008) J Macromol Sci A 45:1084–1101CrossRefGoogle Scholar
  16. 16.
    Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ (2007) Talanta 73:202–219CrossRefGoogle Scholar
  17. 17.
    Honeychurch KC, Hart JP (2003) Trends Anal Chem 22:456–469CrossRefGoogle Scholar
  18. 18.
    Tymecki L, Glab S, Koncki R (2006) Sensors 6:390–396CrossRefGoogle Scholar
  19. 19.
    Choi YW, Moon SH (2001) Environ Monit Asses 70:167–180CrossRefGoogle Scholar
  20. 20.
    Choi YW, Moon SH (2004) Environ Monit Asses 92:163–178CrossRefGoogle Scholar
  21. 21.
    Hassan SSM, Abbas MN, Moustafa GEA (1996) Talanta 43:797–804CrossRefGoogle Scholar
  22. 22.
    Ardakani MM, Dastanpour A, Salavati-Niasari M (2005) Microchim Acta 150:67–72CrossRefGoogle Scholar
  23. 23.
    Choi WY, Minoura N, Moon SH (2005) Talanta 66:1254–1263CrossRefGoogle Scholar
  24. 24.
    Singh LP, Bhatnagar JM, Tanaka S, Tsue H, Mori M (2005) Anal Chim Acta 546:199–205CrossRefGoogle Scholar
  25. 25.
    Hassan SSH, El-Shahawi MS, Othman AM, Mosaad MA (2005) Anal Sci 21:673–678CrossRefGoogle Scholar
  26. 26.
    Ertürün HEK, Yilmaz M, Kilic E (2007) Sens Actuators B 127:497–504CrossRefGoogle Scholar
  27. 27.
    Lee HJ, Hong US, Lee DK, Shin JH, Nam H, Cha GS (1998) Anal Chem 70:3377–3383CrossRefGoogle Scholar
  28. 28.
    Maminska R, Dybko A, Wroblewski W (2006) Sens Actuators B 115:552–557CrossRefGoogle Scholar
  29. 29.
    Bakker E, Pretsch E, Bühlmann P (2000) Anal Chem 72:1127–1133CrossRefGoogle Scholar
  30. 30.
    Gismera MJ, Sevilla MT, Procopio JR (2006) Anal Sci 22:405–410CrossRefGoogle Scholar
  31. 31.
    Gismera MJ, Hueso D, Procopio JR, Sevilla MT (2004) Anal Chim Acta 524:347–353CrossRefGoogle Scholar
  32. 32.
    Gismera MJ, Procopio JR, Sevilla MT, Hernandez L (2003) Electroanalysis 353:126–132CrossRefGoogle Scholar
  33. 33.
    Marczenko Z (1976) Spectrophotometric determination of elements. Horwood, LondonGoogle Scholar
  34. 34.
    Jain AK, Singh LP, Jain PK (1995) Sens Actuators B 24–25:729–732CrossRefGoogle Scholar
  35. 35.
    Buck RP, Lindeer E (1994) Pure Appl Chem 66:2527–2536CrossRefGoogle Scholar
  36. 36.
    European Council (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumptionGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Raúl A. Sánchez-Moreno
    • 1
  • M. Jesús Gismera
    • 1
  • M. Teresa  Sevilla
    • 1
  • Jesús R. Procopio
    • 1
  1. 1.Departamento de Química Analítica y Análisis InstrumentalFacultad de Ciencias, Universidad Autónoma de MadridMadridSpain

Personalised recommendations