Analytical and Bioanalytical Chemistry

, Volume 396, Issue 5, pp 1805–1816 | Cite as

Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach

  • Héctor Moncada-Hernández
  • Blanca H. Lapizco-EncinasEmail author
Original Paper


Microanalytical methods offer attractive characteristics for rapid microbial detection and concentration. There is a growing interest in the development of microscale separation techniques. Dielectrophoresis (DEP), a nondestructive electrokinetic transport mechanism, is a technique with great potential for microbe manipulation, since it can achieve concentration and separation in a single step. DEP is the movement of particles due to polarization effects in nonuniform electric fields. The majority of the work on dielectrophoretic manipulation of microbes has employed alternating current fields in arrays of microelectrodes, an approach with some disadvantages. An alternative is to employ insulator-based DEP (iDEP), a dielectrophoretic mode where nonuniform fields are produced by employing arrays of insulating structures. This study presents the concentration and fractionation of a mixture of bacteria and yeast cells employing direct current-iDEP in a microchannel containing an array of cylindrical insulating structures. Negative dielectrophoretic trapping of both types of microorganisms was demonstrated, where yeast cells exhibited a stronger response, opening the possibility for dielectrophoretic differentiation. Simultaneous concentration and fractionation of a mixture of both types of cells was carried out analogous to a chromatographic separation, where a dielectropherogram was obtained in less than 2 min by applying an electric field gradient and achieving concentration factors in the order of 50 and 37 times the inlet concentration for Escherichia coli and Saccharomyces cerevisiae cells, respectively. Encouraging results were also obtained employing a sample of water taken from a pond. The findings demonstrated the great potential of iDEP as a rapid and effective technique for intact microorganism concentration and separation.


Simultaneous concentration and separation of a mixture of bacteria and yeast in a single step, employing an electric field gradient with insulator-based dielectrophoresis


Dielectrophoresis Electrokinetic Electroosmotic flow Microfluidics Microorganisms 



Alternating current






Direct current


Electroosmotic flow







The authors would like to acknowledge the financial support provided by Award For Women in Science L’ÓREAL-UNESCO-AMC Mexico 2008 and grant CONACYT-CB-2006-53603. The authors are grateful for the financial support provided by Cátedra de Investigación (CAT142) of Tecnológico de Monterrey.


  1. 1.
    Koubova V, Brynda E, Karasova L, Skvor J, Homola J, Dostalek J, Tobiska P, Rosicky J (2001) Sens Actuator B-Chem 74:100–105CrossRefGoogle Scholar
  2. 2.
    Naravaneni R, Kaiser J (2005) J Med Microbiol 54:51–54CrossRefGoogle Scholar
  3. 3.
    Boer E, Beumer RR (1999) Int J Food Microbiol 1:119–130CrossRefGoogle Scholar
  4. 4.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Anal Chem 70:4974–4984CrossRefGoogle Scholar
  5. 5.
    Whitesides GM (2006) Nature 442:368–373CrossRefGoogle Scholar
  6. 6.
    Voldman J (2006) Ann Rev Biomed Eng 8:425–454CrossRefGoogle Scholar
  7. 7.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Anal Chem 76:1571–1579CrossRefGoogle Scholar
  8. 8.
    Pohl HA (1951) J Appl Phys 22:869–871CrossRefGoogle Scholar
  9. 9.
    Pohl HA, Hawk I (1966) Science 152:647–649CrossRefGoogle Scholar
  10. 10.
    Hughes MP, Morgan H, Rixon FJ (2001) Eur Biophys J Biophys Lett 30:268–272Google Scholar
  11. 11.
    Li H, Bashir R (2002) Sens Actuator B-Chem 86:215–221CrossRefGoogle Scholar
  12. 12.
    Markx GH, Dyda PA, Pethig R (1996) J Biotechnol 51:175–180CrossRefGoogle Scholar
  13. 13.
    Ferrier GA, Romanuik SF, Thomson DJ, Bridges GE, Freeman MR (2008) in 2008 NSTI Nanotechnology Conference and Trade Show, Boston, MA, June 20–24, vol. 2, pp. 589–592Google Scholar
  14. 14.
    Markx GH, Talary MS, Pethig R (1994) J Biotechnol 32:29–37CrossRefGoogle Scholar
  15. 15.
    Brown AP, Harrison AB, Betts WB, O'Neill JG (1997) Microbios 91:55–65Google Scholar
  16. 16.
    Brown AP, Betts WB (2001) In: Smith M, Thompson KC (eds) Cryptosporidium: the analytical challenge. Royal Society of Chemistry, Coventry, pp 84–87, Special PublicationGoogle Scholar
  17. 17.
    Hughes MP (2002) Nanoelectromechanics in engineering and biology. CRC, Boca RatonGoogle Scholar
  18. 18.
    Crane JS, Pohl HA (1968) J Electrochem Soc 115:584–586CrossRefGoogle Scholar
  19. 19.
    Castellarnau M, Errachid A, Madrid C, Juárez A, Samitier J (2006) Biophys J 91:3937–3945CrossRefGoogle Scholar
  20. 20.
    Cheng I-F, Chang H-C, Hou D, Chang H-C (2007) Biomicrofluidics 1:021503Google Scholar
  21. 21.
    Chou CF, Zenhausern F (2003) IEEE Eng Med Biol Mag 22:62–67CrossRefGoogle Scholar
  22. 22.
    Zhou GB, Imamura M, Suehiro J, Hara M (2002) In 37th Annual Meeting of the IEEE Industry Applications Society, Pittsburgh, PA, October 13–18, vol. 2, pp. 1404–1411Google Scholar
  23. 23.
    Suehiro J, Zhou GB, Imamura M, Hara M (2003) IEEE Trans Ind Appl 39:1514–1521CrossRefGoogle Scholar
  24. 24.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Electrophoresis 25:1695–1704CrossRefGoogle Scholar
  25. 25.
    Lapizco-Encinas BH, Davalos R, Simmons BA, Cummings EB, Fintschenko Y (2005) J Microbiol Methods 62:317–326CrossRefGoogle Scholar
  26. 26.
    Barrett LM, Skulan AJ, Singh AK, Cummings EB, Fiechtner GJ (2005) Anal Chem 77:6798–6804CrossRefGoogle Scholar
  27. 27.
    Pysher MD, Hayes MA (2007) Anal Chem 79:4552–4557CrossRefGoogle Scholar
  28. 28.
    Kang KH, Xuan X, Kang Y, Li D (2006) J Appl Phys 99:064702.1–064702.8Google Scholar
  29. 29.
    Kang Y, Li D, Kalams S, Eid J (2008) Biomed Microdev 10:243–249CrossRefGoogle Scholar
  30. 30.
    Suehiro J, Hamada R, Noutomi D, Shutou M, Hara M (2003) J Electrost 57:157–168CrossRefGoogle Scholar
  31. 31.
    Tosun H, Aktug S (2005) Turk J Biol 29:197–202Google Scholar
  32. 32.
    Giannattasio S, Guaragnella N, Corte-Real M, Passarella S, Marra E (2005) Gene 354:93–98CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Héctor Moncada-Hernández
    • 1
  • Blanca H. Lapizco-Encinas
    • 2
    Email author
  1. 1.Departamento de Biotecnología e Ingeniería de Alimentos y Centro de BiotecnologíaTecnológico de MonterreyMonterreyMexico
  2. 2.Centro de Investigación y de Estudios Avanzados del IPN Unidad MonterreyApodacaMexico

Personalised recommendations