Analytical and Bioanalytical Chemistry

, Volume 397, Issue 1, pp 339–343 | Cite as

Investigation of selective molecular interactions using two-dimensional Fourier transform IR spectroscopy

  • Xueyong LiuEmail author
  • Tao Zhou
  • Xiaochuan Wang
  • Junhua ZhangEmail author
Original Paper


A novel method of studying molecular interactions is introduced. It is a method based on the framework of a two-dimensional (2D) infrared (IR) correlation spectroscopy technique with a new data pretreatment strategy. In this method, an additional external perturbation stimulates the system to cause some selective changes in the state, order, and surroundings of system constituents. The overall response of the stimulated system to the applied external perturbation leads to distinctive changes in the measured spectrum, and a series of perturbation-induced dynamic spectra are collected in a systematic manner. Such a set of dynamic spectra are then transformed into a set of 2D correlation spectra by cross-correlation analysis. Temperature was chosen as an external perturbation, and the molecular interaction between 4-aminopyridine (Apy) and methacrylic acid (MAA) was investigated by 2D IR correlation spectroscopy. Synchronous cross peaks exist between the stretching vibration of the C–O group of MAA at 1,298 and 1,202 cm−1 and the C=N group of Apy at 1,531 cm−1, and between the carbonyl group of MAA at 1,705 cm−1 and the amino group of Apy at 3,382 and 3,212 cm−1. The synchronous cross peaks are from orientation of MAA and Apy vibrations generated at the same time; the synchronization of microstructure movements in the molecules indicates that there exists strong interactions between MAA and Apy. According to 2D correlation rules, static electricity and hydrogen-bonding interactions exist between Apy and MAA. Such results were further verified by 1H-NMR spectroscopy. The successful application demonstrates that 2D IR correlation spectroscopy may be a convenient and effective method in the study of molecular interactions.


Synchronous 2D IR correlation spectra of MAA-Apy in 1600–1150 cm−1 region.


Two-dimensional correlation spectroscopy Molecular interaction 4-Aminopyridine Methacrylic acid 



This work was supported by the Foundation of the Institute of Chemical Materials, CAEP (62010917).


  1. 1.
    Noda I (1993) Appl Spectrosc 47:1329–1336CrossRefGoogle Scholar
  2. 2.
    Noda I (1986) Bull Am Phys Soc 31:520Google Scholar
  3. 3.
    Noda I (1989) J Am Chem Soc 111:8116–8118CrossRefGoogle Scholar
  4. 4.
    Zhou T, Zhang AM, Zhao CS, Liang HW, Wu ZY (2007) Macromolecules 40:9009–9017CrossRefGoogle Scholar
  5. 5.
    Sasic S, Muszynski A, Ozaki Y (2000) J Phys Chem A 104:6388–6394CrossRefGoogle Scholar
  6. 6.
    Noda I, Liu Y, Ozaki Y (1996) J Phys Chem 100:8665–8673CrossRefGoogle Scholar
  7. 7.
    Yu ZW, Chen L, Sun SQ, Noda I (2002) J Phys Chem A 106:6683–6687CrossRefGoogle Scholar
  8. 8.
    Ren YZ, Murakami T, Nishioka T, Nakashima K, Noda I, Ozaki Y (2000) J Phys Chem B 104:678–690Google Scholar
  9. 9.
    Wu Y, Czarnik-Makusewicz B, Murayama K, Tsenkova R, Ozaki Y (2000) J Phys Chem B 104:5840–5847CrossRefGoogle Scholar
  10. 10.
    Sasic S, Ozaki Y (2001) Anal Chem 73:2294–2301CrossRefGoogle Scholar
  11. 11.
    Dzwolak W, Kato M, Shimizu A, Taniguchi Y (2000) Appl Spectrosc 54:963–967CrossRefGoogle Scholar
  12. 12.
    Marcott C, Noda I, Dowrey A (1991) Anal Chim Acta 250:131–135CrossRefGoogle Scholar
  13. 13.
    Czarnik-Makusewicz B, Murayama K, Tsenkova R, Ozaki Y (1999) Appl Spectrosc 53:1582–1587CrossRefGoogle Scholar
  14. 14.
    Jung YM, Czarnik-Makusewicz B, Ozaki Y (2000) J Phys Chem B 104:7812–7817CrossRefGoogle Scholar
  15. 15.
    Noda I, Liu Y, Ozaki Y (1996) J Phys Chem 100:8674–8680CrossRefGoogle Scholar
  16. 16.
    Fukutake N, Kabayash T (2002) Chem Phys Lett 365:368–374CrossRefGoogle Scholar
  17. 17.
    Zhao W, Song C, Zheng B, Liu J, Viswanathan T (2002) J Phys Chem B 106:293–296CrossRefGoogle Scholar
  18. 18.
    He Y, Wang G, Cox J, Geng L (2001) Anal Chem 73:2302–2309CrossRefGoogle Scholar
  19. 19.
    Wang F, Polavarapu P (2001) J Phys Chem B 105:7857–7864CrossRefGoogle Scholar
  20. 20.
    Seeman JJ (2003) Nature 421:33–37CrossRefGoogle Scholar
  21. 21.
    Bell SG, Chen XH, Sowden RJ, Williams JN (2003) J Am Chem Soc 125:705–714CrossRefGoogle Scholar
  22. 22.
    Liu XY, Ding XB, Peng YX, Long XP, Chang K (2004) Macromol Biosci 4:680–684CrossRefGoogle Scholar
  23. 23.
    Wulff G (1995) Angew Chem Int Ed Engl 34:1812–1832CrossRefGoogle Scholar
  24. 24.
    Grubmuller H, Heymann P (1996) Science 5251:997–999CrossRefGoogle Scholar
  25. 25.
    Xie CG, Zhang ZP, Wang DP, Guan GJ, Gao DM, Liu JH (2006) Anal Chem 78:8339–8346CrossRefGoogle Scholar
  26. 26.
    Zhou J, He XW (1999) Anal Chim Acta 381:85–91CrossRefGoogle Scholar
  27. 27.
    Kubo H, Yoshioka N, Takeuchi T (2005) Org Lett 7:359–362CrossRefGoogle Scholar
  28. 28.
    Liu XY, Ding XB, Peng YX, Long XP, Chang K (2004) Macromol Biosci 4:412–415CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Chemical Materials, CAEPMianyangSichuanChina
  2. 2.State Key Lab of Polymer Materials Engineering, Polymer Research InstituteSichuan UniversitySichuanChina

Personalised recommendations