Analytical and Bioanalytical Chemistry

, Volume 396, Issue 6, pp 2103–2112 | Cite as

Validation of a newly developed hexaplex real-time PCR assay for screening for presence of GMOs in food, feed and seed

Original Paper

Abstract

For years, an increasing number and diversity of genetically modified plants has been grown on a commercial scale. The need for detection and identification of these genetically modified organisms (GMOs) calls for broad and at the same time flexible high throughput testing methods. Here we describe the development and validation of a hexaplex real-time polymerase chain reaction (PCR) screening assay covering more than 100 approved GMOs containing at least one of the GMO targets of the assay. The assay comprises detection systems for Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens NOS terminator, Figwort Mosaic Virus 34S promoter and two construct-specific sequences present in novel genetically modified soybean and maize that lack common screening elements. Additionally a detection system for an internal positive control (IPC) indicating the presence or absence of PCR inhibiting substances was included. The six real-time PCR systems were allocated to five detection channels showing no significant crosstalk between the detection channels. As part of an extensive validation, a limit of detection (LODabs) ≤ ten target copies was proven in hexaplex format. A sensitivity ≤ ten target copies of each GMO detection system was still shown in highly asymmetric target situations in the presence of 1,000 copies of all other GMO targets of each detection channel. Furthermore, the applicability to a broad sample spectrum and reliable indication of inhibition by the IPC system was demonstrated. The presented hexaplex assay offers sensitive and reliable detection of GMOs in processed and unprocessed food, feed and seed samples with high efficiency.

Figure

PCR amplification curves of all PCR systems comprised in the hexaplex real-time PCR assay for screening for presence of GMOs in food, feed and seed with 50 target copies per reaction.

Keywords

GMO Multiplex Hexaplex Real-time PCR Screening Validation 

References

  1. 1.
    Matsuoka T, Kawashima Y, Akiyama H, Miura H, Goda Y, Sebata T, Isshiki K, Toyoda M, Hino A (2000) J Food Hyg Soc Jpn 41:137–143CrossRefGoogle Scholar
  2. 2.
    Matsuoka T, Kuribara H, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2001) J Food Hyg Soc Jpn 42:24–32CrossRefGoogle Scholar
  3. 3.
    James D, Schmidt AM, Wall E, Green M, Masri S (2003) J Agric Food Chem 51:5829–5834CrossRefGoogle Scholar
  4. 4.
    Hernández M, Rodríguez-Lázaro D, Zhang D, Esteve T, Pla M, Prat S (2005) J Agric Food Chem 53:3333–3337CrossRefGoogle Scholar
  5. 5.
    Germini A, Zanetti A, Salati C, Rossi S, Forre C, Schmid S, Marchelli R (2004) J Agric Food Chem 52:3275–3280CrossRefGoogle Scholar
  6. 6.
    Ohnishi M, Matsuoka T, Kodama T, Kashiwaba K, Futo S, Akiyama H, Maitani T, Furui S, Oguchi T, Hino A (2005) J Agric Food Chem 53:9713–9721CrossRefGoogle Scholar
  7. 7.
    García-Cañas V, González R, Cifuentes A (2004) Electrophoresis 25:2219–2226CrossRefGoogle Scholar
  8. 8.
    Nadal A, Coll A, LaPaz JL, Esteve T, Pla M (2006) Electrophoresis 27:3879–3888CrossRefGoogle Scholar
  9. 9.
    Nadal A, Esteve T, Pla M (2009) J AOAC Int 92(3):765–772Google Scholar
  10. 10.
    Heide BR, Heir E, Holck A (2008) Eur Food Res Technol 227:527–535CrossRefGoogle Scholar
  11. 11.
    Xu J, Miao H, Wu H, Huang W, Tang R, Qiu M, Wen J, Zhu S, Li Y (2006) Biosens Bioelectron 22:71–77CrossRefGoogle Scholar
  12. 12.
    Rudi K, Rud I, Holck A (2003) Nucleic Acids Res 31:e62CrossRefGoogle Scholar
  13. 13.
    Leimanis S, Hernández M, Fernández S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O, Philipp P, Pla M, Puigdomènech P, Vaitilingom M, Bertheau Y, Remacle J (2006) Plant Mol Biol 61:123–139CrossRefGoogle Scholar
  14. 14.
    Leimanis S, Hamels S, Nazé F, Mbella G, Sneyers M, Hochegger R, Broll H, Roth L, Dallmann K, Micsinai A, La Paz J, Pla M, Brünen-Nieweler C, Papazova N, Taverniers I, Hess N, Kirschneit B, Bertheau Y, Audeon C, Laval V, Busch U, Pecoraro S, Neumann K, Rösel S, van Dijk J, Kok E, Bellocchi G, Foti N, Mazzara M, Moens W, Remacle J, Van Den Eede G (2008) Eur Food Res Technol 227:1621–1632CrossRefGoogle Scholar
  15. 15.
    Gunson RN, Bennett S, Maclean A, Carman WF (2008) J Clin Virol 43(4):372–375CrossRefGoogle Scholar
  16. 16.
    Wittwer CT, Herrmann MG, Gundry CN, Elenitoba-Johnson KS (2001) Methods 25(4):430–442CrossRefGoogle Scholar
  17. 17.
    Höhne M, Santisi CR, Meyer R (2002) Eur Food Res Technol 215:59–64CrossRefGoogle Scholar
  18. 18.
    Waiblinger H-U, Ernst B, Anderson A, Pietsch K (2008) Eur Food Res Technol 226:1221–1228CrossRefGoogle Scholar
  19. 19.
    Zhang H, Yang L, Guo J, Li X, Jiang L, Zhang D (2008) J Agric Food Chem 56(14):5514–5520CrossRefGoogle Scholar
  20. 20.
    Gaudron T, Peters C, Boland E, Steinmetz A, Moris G (2009) Eur Food Res Technol 229:295–305Google Scholar
  21. 21.
    Murray MG, Thompson WF (1980) Nuc Acids Res 8:4321–4325CrossRefGoogle Scholar
  22. 22.
    International Organization for Standardization, Geneva, Switzerland (2005) ISO 21570:2005. Foodstuffs—methods of analysis for the detection of genetically modified organisms and derived products—quantitative nucleic acid based methodsGoogle Scholar
  23. 23.
    Dong W, Yang L, Shen K, Kim B, Kleter G, Marvin H, Guo R, Liang W, Zhang D (2008) BMC Bioinformatics 9:260Google Scholar
  24. 24.
    AGBIOS GM crop database, Merrickville, Canada. http://www.agbios.com/dbase.php. Accessed 05 Aug 2009

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Eurofins GeneScan GmbHFreiburgGermany

Personalised recommendations