Advertisement

Analytical and Bioanalytical Chemistry

, Volume 396, Issue 4, pp 1381–1384 | Cite as

SERS as tool for the analysis of DNA-chips in a microfluidic platform

  • Katharina K. Strelau
  • Robert Kretschmer
  • Robert Möller
  • Wolfgang Fritzsche
  • Jürgen Popp
Short Communication

Abstract

A sequence-specific detection method of DNA is presented combining a solid chip surface for immobilisation of capture DNAs with a microfluidic platform and a readout of the chip based on SERS. The solid chip surface is used for immobilisation of different capture DNAs, where target strands can be hybridised and unbound surfactants can be washed away. For the detection via SERS, short-labelled oligonucleotides are hybridised to the target strands. This technique is combined with a microfluidic platform that enables a fast and automated preparation process. By applying a chip format, the problems of sequence-specific DNA detection in solution phase by means of SERS can be overcome. With this setup, we are able to distinguish between different complementary and non-complementary target sequences in one sample solution.

Keywords

SERS DNA detection Microfluidics Multiplexing Biochip 

Notes

Acknowledgment

The funding of research project “Jenaer Biochip Initiative” (JBCI) within the framework “Unternehmen Region—Inno Profile” from the Federal Ministry of Education and Research, Germany (BMBF) is gratefully acknowledged.

References

  1. 1.
    Vo-Dinh T, Houck K, Stokes DL (1994) Anal Chem 66:3379–3383CrossRefGoogle Scholar
  2. 2.
    Cao YC, Jin R, Mirkin CA (2002) Science (Washington, DC) 297:1536–1540CrossRefGoogle Scholar
  3. 3.
    Moeller R, Powell RD, Hainfeld JF, Fritzsche W (2005) Nano Lett 5:1475–1482CrossRefGoogle Scholar
  4. 4.
    Quang LX, Lim C, Seong GH, Choo J, Do KJ, Yoo SK (2008) Lab Chip 8:2214–2219CrossRefGoogle Scholar
  5. 5.
    Strehle KR, Cialla D, Roesch P, Henkel T, Koehler M, Popp J (2007) Anal Chem 79:1542–1547CrossRefGoogle Scholar
  6. 6.
    Monaghan PB, McCarney KM, Ricketts A, Littleford RE, Docherty F, Smith WE, Graham D, Cooper JM (2007) Anal Chem (Washington, DC) 79:2844–2849Google Scholar
  7. 7.
    Graham D, Faulds K (2008) Chem Soc Rev 37:1042–1051CrossRefGoogle Scholar
  8. 8.
    Hering K, Cialla D, Ackermann K, Doerfer T, Moeller R, Schneidewind H, Mattheis R, Fritzsche W, Roesch P, Popp J (2008) Analytical and Bioanalytical Chemistry 390:113–124CrossRefGoogle Scholar
  9. 9.
    Graham D, Mallinder BJ, Smith WE (2000) Angew Chem Angew Chem Int Ed 39:1061–1063CrossRefGoogle Scholar
  10. 10.
    Docherty FT, Monaghan PB, Keir R, Graham D, Smith WE, Cooper JM (2004) Chem Commun (Cambridge, United Kingdom):118–119Google Scholar
  11. 11.
    Plieth W, Dietz H, Anders A, Sandmann G, Meixner A, Weber M, Kneppe H (2005) Surf Sci 597:119–126CrossRefGoogle Scholar
  12. 12.
    Sun L, Yu C, Irudayaraj J (2007) Anal Chem (Washington, DC) 79:3981–3988Google Scholar
  13. 13.
    Schuler T, Asmus T, Fritzsche W, Moller R (2009) Biosens Bioelectron 24:2077–2084CrossRefGoogle Scholar
  14. 14.
    Schüler T, Kretschmer R, Jessing S, Urban M, Fritzsche W, Möller R, J Popp (2009) Biosens Bioelectron 25:15–21Google Scholar
  15. 15.
    Wong AKY, Krull UJ (2005) Analytical and Bioanalytical Chemistry 383:187–200CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Katharina K. Strelau
    • 1
  • Robert Kretschmer
    • 1
  • Robert Möller
    • 1
  • Wolfgang Fritzsche
    • 2
  • Jürgen Popp
    • 1
    • 2
  1. 1.Jenaer Biochip Initiative, Institute of Physical ChemistryFriedrich-Schiller-University JenaJenaGermany
  2. 2.Institute of Photonic TechnologyJenaGermany

Personalised recommendations