Analytical and Bioanalytical Chemistry

, Volume 396, Issue 8, pp 2871–2879

Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens

  • Stela Canulescu
  • Igor S. Molchan
  • C. Tauziede
  • Agnes Tempez
  • J. A. Whitby
  • George E. Thompson
  • Peter Skeldon
  • P. Chapon
  • Johann Michler
Original Paper

Abstract

A new method is presented for elemental and molecular analysis of halogen-containing samples by glow discharge time-of-flight mass spectrometry, consisting of detection of negative ions from a pulsed RF glow discharge in argon. Analyte signals are mainly extracted from the afterglow regime of the discharge, where the cross section for electron attachment increases. The formation of negative ions from sputtering of metals and metal oxides is compared with that for positive ions. It is shown that the negative ion signals of F and TaO2F are enhanced relative to positive ion signals and can be used to study the distribution of a tantalum fluoride layer within the anodized tantala layer. Further, comparison is made with data obtained using glow-discharge optical emission spectroscopy, where elemental fluorine can only be detected using a neon plasma. The ionization mechanisms responsible for the formation of negative ions in glow discharge time-of-flight mass spectrometry are briefly discussed.

Keywords

RF glow discharge mass spectrometry Negative ions Fluorine ions Pulsed discharge Anodic tantala Mass spectrometry/ICP-MS Thin films (XPS|XRF|EDX) 

References

  1. 1.
    Nickel H, Broekaert JAC (1999) Fresenius' J Anal Chem 363:145–155CrossRefGoogle Scholar
  2. 2.
    Pisonereo J, Fernández B, Günther D (2009) J Anal At Spectrom 24:1145–1160CrossRefGoogle Scholar
  3. 3.
    Fulford JE, Quan ESK (1988) Appl Spectrosc 42:425–428CrossRefGoogle Scholar
  4. 4.
    Oechsner H (1995) Int J Mass Spectrom Ion Process 143:271–282CrossRefGoogle Scholar
  5. 5.
    Hoffmann V, Kasik M, Robinson PK, Venzago C (2005) Anal Bioanal Chem 381:173–188CrossRefGoogle Scholar
  6. 6.
    Hohl M, Kanzari A, Michler J, Nelis T et al (2006) Surf Interface Anal 38:292–295CrossRefGoogle Scholar
  7. 7.
    Weiss Z, Marshall K (1997) Thin Solid Films 308–309:382–388CrossRefGoogle Scholar
  8. 8.
    Pisonero J (2006) Anal Bioanal Chem 384:47–49CrossRefGoogle Scholar
  9. 9.
    Muniz AC, Pisonero J, Lobo L, Gonzalez C et al (2008) J Anal At Spectrom 23:1239–1246CrossRefGoogle Scholar
  10. 10.
    Tuccitto N, Lobo L, Tempez A, Delfanti I et al (2009) Rapid Commun Mass Spectrom 23:549–556CrossRefGoogle Scholar
  11. 11.
    Bogaerts A, Gijbels R (1998) Spectrochim Acta Part B 53:1–42CrossRefGoogle Scholar
  12. 12.
    Pan C, King FL (1993) J Am Soc Mass Spectrom 4:727–732CrossRefGoogle Scholar
  13. 13.
    King FL, Pan C (1993) Anal Chem 65:735–739CrossRefGoogle Scholar
  14. 14.
    Vickers GH, Wilson DA, Hieftje GM (2002) Anal Chem 60:1808–1812CrossRefGoogle Scholar
  15. 15.
    Bentz BL, Harrison WW (1981) Int J Mass Spectrom Ion Phys 37:167–176CrossRefGoogle Scholar
  16. 16.
    Canulescu S, Whitby J, Fuhrer K, Hohl M et al (2009) J Anal At Spectrom 24:178–180CrossRefGoogle Scholar
  17. 17.
    Tempez A, Canulescu S, Molchan IS, Döbeli M et al (2009) Surf Int Anal 41(12-13):966–973Google Scholar
  18. 18.
    Shimizu K, Kobayashi K, Thompson GE, Skeldon P et al (1996) Philos Mag, B 73:461–485CrossRefGoogle Scholar
  19. 19.
    Pisonero J, Feldmann I, Bordel N, Sanz-Medel A et al (2005) Anal Bioanal Chem 382:1965–1974CrossRefGoogle Scholar
  20. 20.
    Molchan IS, Thompson GE, Skeldon P, Trigoulet N et al (2009) J Anal At Spectrom 24:734–741CrossRefGoogle Scholar
  21. 21.
    Stoffels E, Stoffels WW, Vender D, Haverlag M et al (1995) Contrib Plasma Phys 35:331–357CrossRefGoogle Scholar
  22. 22.
    Overzet LJ, Lin Y, Luo L (1992) J Appl Phys 72:5579–5592CrossRefGoogle Scholar
  23. 23.
    Wagatsuma K, Hirokawa K, Yamashita N (1996) Anal Chim Acta 324:147–154CrossRefGoogle Scholar
  24. 24.
    Habazaki H, Fushimi K, Shimizu K, Skeldon P et al (2007) Electrochem Commun 9:1222–1227CrossRefGoogle Scholar
  25. 25.
    Martín A, Menéndez A, Pereiro R, Bordel N et al (2007) Anal Bioanal Chem 388:1573–1582CrossRefGoogle Scholar
  26. 26.
    Hodoroaba V-D, Hoffmann V, Steers EBM, Wetzig K (2000) J Anal At Spectrom 15:1075–1080CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Stela Canulescu
    • 1
  • Igor S. Molchan
    • 2
  • C. Tauziede
    • 3
  • Agnes Tempez
    • 3
  • J. A. Whitby
    • 1
  • George E. Thompson
    • 2
  • Peter Skeldon
    • 2
  • P. Chapon
    • 3
  • Johann Michler
    • 1
  1. 1.Laboratory for Mechanics of Materials and NanostructuresEMPA, Swiss Federal Laboratories for Materials Testing and ResearchThunSwitzerland
  2. 2.Corrosion and Protection Centre, School of MaterialsThe University of ManchesterManchesterUK
  3. 3.HORIBA Jobin Yvon SASLongjumeauFrance

Personalised recommendations