Advertisement

Analytical and Bioanalytical Chemistry

, Volume 396, Issue 4, pp 1405–1414 | Cite as

Determination of the natural abundance δ15N of nortropane alkaloids by gas chromatography–isotope ratio mass spectrometry of their ethylcarbamate esters

  • Katarzyna Kosieradzka
  • Illa Tea
  • Emmanuel Gentil
  • Richard J. RobinsEmail author
Original Paper

Abstract

An important route for the detoxification of tropane alkaloids involves N-demethylation to the nor-compounds followed by further degradation. In order to study the mechanisms of the pertinent reactions, a suitable means to determine the isotope ratios of the substrates and products is required. However, the polarity and functionality of the nortropane compounds makes their analysis as free bases difficult. A method is described which allows both the quantification of nortropane alkaloids and the determination of their natural abundance δ15N values. The protocol exploits the derivatisation of the alkaloids by reaction with ethyl chloroformate in aqueous medium and the quantitative extraction of the ensuing ethylcarbamate esters. The improved chromatographic properties of these derivatives gives ample separation of the isomeric nortropine and norpseudotropine for measurement of their δ15N (‰) values by isotope ratio mass spectrometry interfaced to gas chromatography. Adequate separation could not be achieved with the underivatised compounds. Repeatability and precision are sufficient to allow differences in the δ15N values (∆δ15N) > 0.8‰ to be measured, with a standard deviation routinely ∼0.3‰. The methodology has been tested by determining the changes in the δ15N values of nortropine and norpseudotropine during degradation by cell suspension cultures of a Pseudomonas strain expressing a specific capacity for tropine catabolism. The precision and reproducibility are shown sufficient to allow the evolution of the δ15N values to be followed during the fermentation.

Keywords

Derivatisation Isotope ratio measurement by mass spectrometry Nortropine Reaction mechanism Tropane alkaloids 

Notes

Acknowledgements

K Kosieradzka thanks the French Ministry of Science and Education for a doctoral bursary. We thank Boehringer Ingelheim (Ingelheim, Germany) for their generous gift of nortropinone·HCl. We are most grateful to our colleagues Nadia Guignard and Isabelle Louvet for their assistance with the irm-MS analyses. We thank Dr P W Trudgill (Department of Biochemistry, University of Wales, Aberystwyth, UK) for supplying us with the Pseudomonas culture.

Supplementary material

216_2009_3354_MOESM1_ESM.pdf (733 kb)
ESM 1 (PDF 733 kb)

References

  1. 1.
    Lounasmaa M, Tamminen T (1993) Alkaloids 44:1–114Google Scholar
  2. 2.
    Broadley KJ (1996) Antagonists at muscarinic cholinergic receptors. In: Autonomic pharmacology. Taylor & Francis, London, pp 349-379Google Scholar
  3. 3.
    Dräger B (2004) Nat Prod Rep 21:211–223CrossRefGoogle Scholar
  4. 4.
    Kloss MW, Rosen GM, Rauckman EJ (1983) Mol Pharmacol 23:482–485Google Scholar
  5. 5.
    Long MT, Hopper DJ, Trudgill PW (1993) FEMS Microbiol Lett 106:111–116CrossRefGoogle Scholar
  6. 6.
    Bartholomew BA, Smith MJ, Trudgill PW, Hopper DJ (1996) Appl Environ Microbiol 62:3245–3250Google Scholar
  7. 7.
    Bartholomew BA, Smith MJ, Long MT, Darcy PJ, Trudgill PW, Hopper DJ (1993) Biochem J 293:115–118Google Scholar
  8. 8.
    Robins RJ, Molinié R, Kwiecień RA, Paneth P, Lebreton J, Bartholomeusz TA, Roscher A, Dräger B, Meier A-C, Mesnard F (2007) Phytochem Rev 6:51–63CrossRefGoogle Scholar
  9. 9.
    Anderson VE (1991) Isotope effects on enzyme-catalyzed β-eliminations. In: Cook P (ed) Enzyme mechanisms from isotope effects. CRC, Boca Raton, pp 389–417Google Scholar
  10. 10.
    Cook P (1998) Isotop Env Health Stud 34:3–17CrossRefGoogle Scholar
  11. 11.
    Schramm V (2003) Acc Chem Res 36:588–596CrossRefGoogle Scholar
  12. 12.
    Schramm VL (2005) Arch Biochem Biophys 433:13–26CrossRefGoogle Scholar
  13. 13.
    Molinié R (2005) Effet isotopique cinétique de l'azote au cours de la déméthylation des alcaloïdes par les plantes et les bactéries. PhD thesis, University of Nantes, FranceGoogle Scholar
  14. 14.
    Molinié R, Ferchaud-Roucher V, Lebreton J, Robins RJ (2005) Rapid Commun Mass Spectrom 19:2039–2044CrossRefGoogle Scholar
  15. 15.
    Molinié R, Kwiecień RA, Paneth P, Hatton W, Lebreton J, Robins RJ (2007) Arch Biochem Biophys 458:175–183CrossRefGoogle Scholar
  16. 16.
    Mauve C, Bleton J, Bathellier C, Lelarge-Trouverie C, Guérard F, Ghashghaie J, Tchapla A, Tcherkez G (2009) Rapid Commun Mass Spectrom 23:2499–2506CrossRefGoogle Scholar
  17. 17.
    Molinié R, Kwiecień RA, Silvestre V, Robins RJ (2009) Rapid Commun Mass Spectrom 23:4031–4037CrossRefGoogle Scholar
  18. 18.
    Yamamoto S, Kakuno K, Okahara S, Katoka H, Makita M (1980) J Chromatogr 194:399–403CrossRefGoogle Scholar
  19. 19.
    Kim R, Paik M, Kim J, Dong S, Jeong D (1997) J Pharm Biomed Anal 15:1309–1318CrossRefGoogle Scholar
  20. 20.
    Becket A, Harmper N, Balon A, Watts T (1957) Chem Ind 663-665Google Scholar
  21. 21.
    Dautraix S, Gerola K, Guilly R, Brazier JL, Chateau A, Guichard E, Etievant P (1995) J Agric Food Chem 43:981–983CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Katarzyna Kosieradzka
    • 1
  • Illa Tea
    • 1
  • Emmanuel Gentil
    • 1
  • Richard J. Robins
    • 1
    Email author
  1. 1.Elucidation of Biosynthesis by Isotopic Spectrometry Group, Unit for Interdisciplinary Chemistry: Synthesis-Analysis-Modelling (CEISAM)University of Nantes—CNRS UMR6230NantesFrance

Personalised recommendations