Advertisement

Analytical and Bioanalytical Chemistry

, Volume 396, Issue 8, pp 2833–2840 | Cite as

In-depth profile analysis of filled alumina and titania nanostructured templates by radiofrequency glow discharge coupled to optical emission spectrometry

  • D. Alberts
  • V. Vega
  • R. Pereiro
  • N. Bordel
  • V. M. Prida
  • A. Bengtson
  • A. Sanz-Medel
Original Paper

Abstract

The development of highly ordered and self-assembled magnetic nanostructures such as arrays of Fe or Ni nanowires and their alloys is arousing increasing interest due to the peculiar magnetic properties of such materials at the nanoscale. These nanostructures can be fabricated using nanoporous anodic alumina membranes or self-assembled nanotubular titanium dioxide as templates. The chemical characterization of the nanostructured layers is of great importance to assist the optimization of the filling procedure or to determine their manufacturing quality. Radiofrequency glow discharge (RF-GD) coupled to optical emission spectrometry (OES) is a powerful tool for the direct analysis of either conducting or insulating materials and to carry out depth profile analysis of thin layers by multi-matrix calibration procedures. Thus, the capability of RF-GD-OES is investigated here for the in-depth quantitative analysis of self-aligned titania nanotubes and self-ordered nanoporous alumina filled with arrays of metallic and magnetic nanowires obtained using the template-assisted filling method. The samples analysed in this work consisted of arrays of Ni nanowires with different lengths (from 1.2 up to 5 µm) and multilayer nanowires of alternating layers with different thicknesses (of 1–2 µm) of Ni and Au, or Au and FeNi alloy, deposited inside the alumina and titania membranes. Results, compared with other techniques such as scanning electron microscopy and energy-dispersive X-ray spectroscopy, show that the RF-GD-OES surface analysis technique proves to be adequate and promising for this challenging application.

Figure

SEM image of nanoporous alumina template with in-depth profile obtained by RF-GD-OES

Keywords

Glow discharge Optical emission spectrometry Nanostructures In-depth profile Metal nanowires 

Notes

Acknowledgements

The present research was supported by the EU through the Marie Curie Research Training Network (MRTN-CT-2006-035459). This work is part of the activity of WP4 ‘Analytical studies’ of GLADNET [27]. The financial support from “Plan Nacional de I+D+I” (Spanish Ministry of Science and Innovation and FEDER Programme) through the project MAT2007-65097-C02 and FC04-EQP-28 is gratefully acknowledged.

References

  1. 1.
    Mitura S (2000) Nanotechnology in materials science. Elsevier Science, AmsterdamGoogle Scholar
  2. 2.
    Ross CA (2001) Ann Rev Mater Res 31:203–235CrossRefGoogle Scholar
  3. 3.
    Vazquez M, Pirota K, Hernandez-Vélez M, Prida VM, Navas D, Sanz R, Batallan F, Velasquez J (2004) J Appl Phy 95:6642–6644CrossRefGoogle Scholar
  4. 4.
    Whitney TM, Searson PC, Jiang JS, Chien CL (1993) Science 261:1316–1319CrossRefGoogle Scholar
  5. 5.
    Vazquez M, Hernandez-Vélez M, Pirota K, Asenjo A, Navas D, Velasquez J, Vargas P, Ramos C (2004) Eur Phys JB 40:489–497Google Scholar
  6. 6.
    Masuda H, Fukuda K (1995) Science 268:1466–1468CrossRefGoogle Scholar
  7. 7.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Nano Lett 1:191–195CrossRefGoogle Scholar
  8. 8.
    Zhao J, Wang X, Chen R, Li L (2005) Solid State Comm 134:705–710CrossRefGoogle Scholar
  9. 9.
    Marcus RK, Broekaert JAC (2003) Glow discharge plasmas in analytical spectroscopy. Wiley, ChichesterGoogle Scholar
  10. 10.
    Bings NH, Bogaerts A, Broekaert JAC (2004) Anal Chem 76:3313–3336CrossRefGoogle Scholar
  11. 11.
    Pisonero J, Costa JM, Pereiro R, Bordel N, Sanz-Medel A (2004) Anal Biochem Chem 379:17–29Google Scholar
  12. 12.
    Marshall KA, Casper TJ, Brushwyler KR, Mitchell JC (2003) J Anal At Spectrom 18:637–645CrossRefGoogle Scholar
  13. 13.
    Menendez A, Bordel N, Pereiro R, Sanz-Medel A (2005) J Anal At Spectrom 20:233–235CrossRefGoogle Scholar
  14. 14.
    Menendez A, Pereiro R, Bordel N, Sanz-Medel A (2006) J Anal At Spectrom 21:531–534CrossRefGoogle Scholar
  15. 15.
    Fernandez B, Bordel N, Pereiro R, Sanz-Medel A (2004) Anal Chem 76:1039–1044CrossRefGoogle Scholar
  16. 16.
    Pérez C, Pereiro R, Bordel N, Sanz-Medel A (1998) Spectrochim Acta Part B 53:1541–1551CrossRefGoogle Scholar
  17. 17.
    Prida VM, Navas D, Pirota KR, Hernandez-Velez M, Menéndez A, Bordel N, Pereiro R, Sanz-Medel A, Hernando B, Vazquez M (2006) Phys Status Solidi A 203:1241–1247CrossRefGoogle Scholar
  18. 18.
    Shimizu K, Payling R, Habazaki H, Skeldon P, Thompson GE (2004) J Anal At Spectrom 19:692–695CrossRefGoogle Scholar
  19. 19.
    Rout TK (2007) Scripta Mater 56:573–576CrossRefGoogle Scholar
  20. 20.
    Escobar Galindo R, Gago R, Forniés E, Muñoz-Martin A, Climent Font A, Albella JM (2006) Spectrochim Acta Part B 61:545–553CrossRefGoogle Scholar
  21. 21.
    Prida VM, Hernandez-Vélez M, Pirota KR, Menéndez A, Vazquez M (2005) Nanotechnology 16:2696–2702CrossRefGoogle Scholar
  22. 22.
    Prida VM, Pirota KR, Navas D, Asenjo A, Hernández-Vélez M, Vázquez M (2007) J Nanosci Nanotec 7:272–285Google Scholar
  23. 23.
    Wang Z, Brust M (2007) Nanoscale Res Lett 2:34–39CrossRefGoogle Scholar
  24. 24.
    Kang Y, Zhao J, Tao J, Wang X, Li Y (2008) Appl Surf Sci 254:3935–3938CrossRefGoogle Scholar
  25. 25.
    Therese L, Ghalem Z, Guillot P, Belenguer P (2006) Anal Bioanal Chem 386:163–168CrossRefGoogle Scholar
  26. 26.
    Wilken L, Hoffmann V, Wetzig K (2007) Spectrochim Acta Part B 62:1085–1122CrossRefGoogle Scholar
  27. 27.

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • D. Alberts
    • 1
  • V. Vega
    • 2
    • 3
  • R. Pereiro
    • 1
  • N. Bordel
    • 2
  • V. M. Prida
    • 2
  • A. Bengtson
    • 4
  • A. Sanz-Medel
    • 1
  1. 1.Department of Physical and Analytical Chemistry, Faculty of ChemistryUniversity of OviedoOviedoSpain
  2. 2.Department of Physics, Faculty of ScienceUniversity of OviedoOviedoSpain
  3. 3.Scientific-Technical Research ServicesUniversity of OviedoOviedoSpain
  4. 4.Swerea KIMAB ABStockholmSweden

Personalised recommendations