Advertisement

Analytical and Bioanalytical Chemistry

, Volume 396, Issue 8, pp 2757–2768 | Cite as

Non-destructive depth compositional profiles by XPS peak-shape analysis

  • M. C. López-Santos
  • F. Yubero
  • J. P. Espinós
  • A. R. González-Elipe
Review

Abstract

The measured peak shape and intensity of the photoemitted signal in X-ray photoelectron spectroscopy (XPS) experiments (elastic and inelastic parts included) are strongly correlated, through electron-transport theory, with the depth distribution of photoelectron emitters within the analyzed surface. This is the basis of so-called XPS peak-shape analysis (also known as the Tougaard method) for non-destructive determination of compositional in-depth (up to 6–8 nm) profiles. This review describes the theoretical basis and reliability of this procedure for quantifying amounts and distributions of material within a surface. The possibilities of this kind of analysis are illustrated with several case examples related to the study of the initial steps of thin-film growth and the modifications induced in polymer surfaces after plasma treatments.

Figure

Photoemitted spectra and in-depth concentration profiles (blue: oxygen; orange: carbon), obtained by means of XPS peak shape analysis, of a PET plasma activated surface. The shown topography corresponds to an atomic force microscopy image of the treated surface.

Keywords

XPS Surface analysis Depth profiling Plasma treatment Film growth 

Notes

Acknowledgements

We thank the Ministry of Science and Education of Spain (projects MAT2007-65764 and Consolider Funcoat CSD2008-00023) and the Junta de Andalucía (projects TEP2275 and P07-FQM-03298) for financial support.

References

  1. 1.
    Briggs D, Seah MP (1990) Practical surface analysis – Auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley–Interscience, ChichesterGoogle Scholar
  2. 2.
    Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. Wiley, UKCrossRefGoogle Scholar
  3. 3.
    Hajati S, Coultas S, Blomfield C, Tougaard S (2008) Surf Interface Anal 40:688–691CrossRefGoogle Scholar
  4. 4.
    Hajati S, Tougaard S, Walton J, Fairley N (2008) Surf Sci 602:3064–3070CrossRefGoogle Scholar
  5. 5.
    Shirley DA (1972) Phys Rev B 5:4709–4714CrossRefGoogle Scholar
  6. 6.
    Tougaard S, Hansen HS, Neumann M (1991) Surf Sci 244:125–134CrossRefGoogle Scholar
  7. 7.
    Jansson C, Hansen HS, Jung C, Braun W, Tougaard S (1992) Surf Interface Anal 19:217–221CrossRefGoogle Scholar
  8. 8.
    Martin-Concepción AI, Yubero F, Espinós JP, Tougaard S (2004) Surf Interface Anal 36:788–792CrossRefGoogle Scholar
  9. 9.
    Kappen P, Reihs K, Seidel C, Voertz M, Fuchs H (2000) Surf Sci 465:40–50CrossRefGoogle Scholar
  10. 10.
    Tougaard S (1996) J Vac Sci Technol A 14:1415–1423CrossRefGoogle Scholar
  11. 11.
    Tougaard S QUASES: software Package for Quantitative XPS/AES Analysis of surface nanostructures by peak shape analysis. http://www.QUASES.com
  12. 12.
    Landau L (1994) J. Phys. 8:201Google Scholar
  13. 13.
    Yubero F, Sanz JM, Ramskov B, Tougaard S (1996) Phys Rev B 53:9719–9727CrossRefGoogle Scholar
  14. 14.
    Tougaard S, Chorkendorff I (1987) Phys Rev B 35:6570–6577CrossRefGoogle Scholar
  15. 15.
    Tougaard S (1997) Surf Interface Anal 25:137–154CrossRefGoogle Scholar
  16. 16.
    Martín-Concepción AI, Yubero F, Espinós JP, González-Elipe AR, Tougaard S (2003) J Vac Sci Technol A 21:1393–1398CrossRefGoogle Scholar
  17. 17.
    Dudeck D, Yanguas-Gil A, Yubero F, Cotrino J, Espinós JP, de la Cruz W, González-Elipe AR (2007) Surf Sci 601:2223–2231CrossRefGoogle Scholar
  18. 18.
    Yubero F, Mansilla C, Ferrer FJ, Holgado JP, González-Elipe AR (2007) J Appl Phys 101:124910CrossRefGoogle Scholar
  19. 19.
    Mansilla C, Gracia F, Martin-Concepción AI, Espinós JP, Holgado JP, Yubero F, González-Elipe AR (2007) Surf Interface Anal 39:331–336CrossRefGoogle Scholar
  20. 20.
    Preda I, Gutiérrez A, Abbate A, Yubero F, Méndez J, Alvarez L, Soriano L (2008) Phys Rev B 77:075411CrossRefGoogle Scholar
  21. 21.
    Schleberger M, Simonsen AC, Tougaard S, Hansen JL, Larsen AN (1997) J Vac Sci Technol, A 15:3032–3035CrossRefGoogle Scholar
  22. 22.
    Simonsen AC, Schleberger M, Tougaard S, Hansen JL, Nylandsted Larsen A (1999) Thin Solid Films 338:165–171CrossRefGoogle Scholar
  23. 23.
    Hansen HS, Jansson C, Tougaard S (1992) J Vac Sci Technol A 10:2938–2944CrossRefGoogle Scholar
  24. 24.
    Hansen HS, Tougaard S, Biebuyck H (1992) J Electron Spectrosc Relat Phenom 58:141–158CrossRefGoogle Scholar
  25. 25.
    González-Elipe AR, Yubero F (2001) In: Nalva HS (ed) Handbook of surfaces and interfaces of materials: surface and interface analysis and properties. Academic Press, San Diego, vol. 2, chapter 4Google Scholar
  26. 26.
    Speller S, Heiland W, Schleberger M (2001) In: Nalva HS (ed) Handbook of surfaces and interfaces of materials: surface and interface analysis and properties. Academic Press, San Diego, vol. 2, chapter 1Google Scholar
  27. 27.
    Espinós JP, Martin-Concepción AI, Mansilla C, Yubero F, González-Elipe AR (2006) J Vac Sci Technol A 24:919–928CrossRefGoogle Scholar
  28. 28.
    Semak BS, Jensen T, Takker LB, Morgen P, Tougaard S (2002) Surf Sci 498:11–20CrossRefGoogle Scholar
  29. 29.
    McIntyre NS, Grosvenor NHY, AP DRD, Briggs D (2005) Surf Interface Anal 37:749–754CrossRefGoogle Scholar
  30. 30.
    Demoisson F, Raes M, Terryn H, Guillot J, Migeon HN, Reniers F (2008) Surf Interface Anal 40:566–570CrossRefGoogle Scholar
  31. 31.
    Preda I (2008) PhD Thesis. Universidad Autónoma de MadridGoogle Scholar
  32. 32.
    Simonsen AC, Tougaard S, Hansen JL, Larsen AN (2001) Surf Interface Anal 31:328–337CrossRefGoogle Scholar
  33. 33.
    Simonsen AC, Pøhler JP, Jeynes C, Tougaard S (1999) Surf Interface Anal 27:52–56CrossRefGoogle Scholar
  34. 34.
    Yubero F, González-Elipe AR, Tougaard S (2000) Surf Sci 457:24–36CrossRefGoogle Scholar
  35. 35.
    Grosvenor AP, Kobe BA, McIntyre NS (2004) Surf Sci 572:217–227CrossRefGoogle Scholar
  36. 36.
    Yubero F, Holgado JP, Barranco A, González-Elipe AR (2002) Surf Interface Anal 34:201–205CrossRefGoogle Scholar
  37. 37.
    Yubero F, Jansson C, Batchelor DR, Tougaard S (1995) Surf Sci 331–335:753–758CrossRefGoogle Scholar
  38. 38.
    López-Santos C, Yubero F, Cotrino J, Barranco A, González-Elipe AR (2008) J Phys D. Appl Phys 41:225209CrossRefGoogle Scholar
  39. 39.
    López-Santos C, et al. (to be published)Google Scholar
  40. 40.
    Tougaard S (1998) Surf Interface Anal 26:249–269CrossRefGoogle Scholar
  41. 41.
    Scharfschwerdt C, Kutscher J, Schneider F, Neumann M, Tougaard S (1992) J Electron Spectrosc Relat Phenom 60:321–335CrossRefGoogle Scholar
  42. 42.
    Tougaard S, Jansson C (1993) Surf Interface Anal 20:1013–1046CrossRefGoogle Scholar
  43. 43.
    Jansson C, Hansen HS, Yubero F, Tougaard S (1992) J Electron Spectrosc Relat Phenom 60:301–319CrossRefGoogle Scholar
  44. 44.
    Tougaard S, Jansson C (1993) Surf Interface Anal 20:1013–1046CrossRefGoogle Scholar
  45. 45.
    Scofield JH (1976) J Elect Spectrosc Relat Phenom 8:129–137CrossRefGoogle Scholar
  46. 46.
    Martín-Concepción AI, Yubero F, Espinós JP, García-López J, Tougaard S (2003) Surf Interface Anal 35:984–990CrossRefGoogle Scholar
  47. 47.
    Hajati S, Zaporojtchenko V, Faupel F, Tougaard S (2007) Surf Sci 601:3261–3267CrossRefGoogle Scholar
  48. 48.
    Jiménez VM, Espinós JP, González-Elipe AR (1999) Appl Surf Sci 141:186–192CrossRefGoogle Scholar
  49. 49.
    Gallardo-Vega C, de la Cruz W, Tougaard S, Cota-Araiza L (2008) Appl Surf Sci 255:3000–3003CrossRefGoogle Scholar
  50. 50.
    Schleberger M, Fujita D, Scharfschwerdt C, Tougaard S (1995) Surf Sci 331–333:942–947CrossRefGoogle Scholar
  51. 51.
    Schleberger M, Fujita D, Scharfschwerdt C, Tougaard S (1995) J Vac Sci Technol B13:949–953Google Scholar
  52. 52.
    Sato M, Tsukamoto N, Shiratori T, Furusawa T, Suzuki N, S. Tougaard S (2006) Surf Interface Anal 38:604–609CrossRefGoogle Scholar
  53. 53.
    Winters HF, Graves DB, Humbird D, Tougaard S (2007) J Vac Sci Technol A 25:96–103CrossRefGoogle Scholar
  54. 54.
    Ferekides CS, Balasubramanian U, Mamazza R, Viswanathan V, Zhao H, Morel DL (2004) Sol. Energy 77:823CrossRefGoogle Scholar
  55. 55.
    Venables A (1999) In: Liu W, Santos MB (eds) Thin films: heteroepitaxial systems, chap. 1. Singapore, World ScientificGoogle Scholar
  56. 56.
    Wagner CD (1975) Faraday discuss. Chem Soc 60:291Google Scholar
  57. 57.
    Wagner CD (1978) J Vac Sci Technol 15:518–523CrossRefGoogle Scholar
  58. 58.
    Mejías JA, Jiménez VM, Lassaletta G, Fernández A, Espinós JP, González-Elipe AR (1996) J Phys Chem 100:16255–16262CrossRefGoogle Scholar
  59. 59.
    Grace JM, Gerenser LJ (2003) J Dispersion Sci Technol 24:305CrossRefGoogle Scholar
  60. 60.
    Truica-Marasescu F, Wertheimer MR (2008) Plasma Process and Polymers 5:44–57CrossRefGoogle Scholar
  61. 61.
    Endrino JL, Marco JF, Allen M, Poolcharuansin P, Phani AR, Albella JM, Anders A (2008) Appl Surf Sci 254:5323–5328CrossRefGoogle Scholar
  62. 62.
    Süzer S (1997) Pure Appl Chem 69:163–168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. C. López-Santos
    • 1
  • F. Yubero
    • 1
  • J. P. Espinós
    • 1
  • A. R. González-Elipe
    • 1
  1. 1.Instituto de Ciencia de Materiales de SevillaSevillaSpain

Personalised recommendations