Advertisement

Analytical and Bioanalytical Chemistry

, Volume 396, Issue 2, pp 707–714 | Cite as

Magnetic-based purification system with simultaneous sample washing and concentration

  • Qasem Ramadan
  • Ting Ting Lau
  • Shihan Bryan Ho
Original Paper

Abstract

Simultaneous washing and concentration of magnetic microparticles was demonstrated using a rotational magnetic system under a continuous-flow condition. The rotation of periodically arranged permanent magnets close to a fluidic channel carrying a suspension of magnetic particles allows the trapping and releasing of particles along the fluidic channel in a periodic manner. Each trapping and releasing event resembles one washing cycle in conventional biological assays. Concentration efficiencies of 99.75 ± 0.083% at a flow rate of 200 µl/min and 88.10 ± 3.17% at a flow rate of 1,000 µl/min and a purification efficiency of 99.10 ± 4.3% at a flow rate of 900 µl/min were achieved.

Keywords

Continuous flow Washing Separation Magnetic particles 

Notes

Acknowledgements

This research was supported by A star-Exploit Technologies (ETPL) under Flagship grant no. F07/E/013. The authors thank ETPL and the Institute of Microelectronics for their support.

Supplementary material

216_2009_3276_MOESM1_ESM.doc (1.3 mb)
ESM 1 (DOC 1301 kb)
ESM 2

(WMV 2185 kb)

References

  1. 1.
    Gijs MAM (2004) Microfluid Nanofluid 1:22–40Google Scholar
  2. 2.
    Nicole P (2006) Lab Chip 6:24–38CrossRefGoogle Scholar
  3. 3.
    Yavuz CT, Prakash A, Mayo JT, Colvin V (2009) Chem Eng Sci 64:2510–2521CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Carpino F, Moore LR, Zborowski M, Chalmers J, Williams S (2005) J Magn Magn Mater 293:546–552CrossRefGoogle Scholar
  6. 6.
    Augusto PA, Grande TC, Augusto P (2005) Chem Eng J 111:85–90CrossRefGoogle Scholar
  7. 7.
    Rotariu O, Ogden ID, MacRae M, Udrea LE, Strachan NJC (2005) Phys Med Biol 50:2967–2977CrossRefGoogle Scholar
  8. 8.
    Barbic M, Mock JJ, Gray AP, Schultz S (2001) Appl Phys Lett 79:1399–1401CrossRefGoogle Scholar
  9. 9.
    Inglis D, Riehn R, Austin RH (2004) Appl Phys Lett 85:5093–5095CrossRefGoogle Scholar
  10. 10.
    Lee H, Purdon AM, Westervelt RM (2004) Appl Phys Lett 85:1063–1065CrossRefGoogle Scholar
  11. 11.
    Ramadan Q, Samper V, Poenar DP, Chen Y (2006) J Microelectromech Syst 15:624–638CrossRefGoogle Scholar
  12. 12.
    Sinha A, Ganguly R, Puri K (2009) J Magn Magn Mater 321:2251–2256CrossRefGoogle Scholar
  13. 13.
    Rida A, Fernandez V, Gijs MAM (2003) Appl Phys Lett 83:2396–2398CrossRefGoogle Scholar
  14. 14.
    Ramadan Q, Samper V, Chen Y, Poenar DP (2006) Appl Phys Lett 88:032501–032503CrossRefGoogle Scholar
  15. 15.
    Hatch GP, Stelter RE (2001) J Magn Magn Mater 225:262–276CrossRefGoogle Scholar
  16. 16.
    Zborowski M, Chalmers JJ, Williams PS (2005) In: Cazes J (ed) Encyclopedia of chromatography. CRC, Boca RatonGoogle Scholar
  17. 17.
    Deng T, Prentiss M, Whitesides GM (2002) Appl Phys Lett 80:461–463CrossRefGoogle Scholar
  18. 18.
    Ritter JA, Ebner AD, Daniel KD, Stewart KL (2004) J Magn Magn Mater 280:184–201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Qasem Ramadan
    • 1
    • 4
  • Ting Ting Lau
    • 2
  • Shihan Bryan Ho
    • 3
  1. 1.Bioelectronics Program, Institute of MicroelectronicsSingaporeRepublic of Singapore
  2. 2.Nanyang Technological UniversitySingaporeRepublic of Singapore
  3. 3.Department of Biomedical EngineeringNational University of SingaporeSingaporeRepublic of Singapore
  4. 4.Swiss Federal Institute of Technology (EPFL), Laboratory of MicrosystemsLausanneSwitzerland

Personalised recommendations