Analytical and Bioanalytical Chemistry

, Volume 396, Issue 1, pp 465–470 | Cite as

Sexing of turkey poults by Fourier transform infrared spectroscopy

  • Gerald SteinerEmail author
  • Thomas Bartels
  • Maria-Elisabeth Krautwald-Junghanns
  • Alois Boos
  • Edmund Koch
Original Paper


Fourier transform infrared (FT-IR) spectroscopy was used to probe the molecular composition of germinal cells and to identify the gender of turkey poults. Germinal cells obtained from a feather pulp were characterized by FT-IR micro spectroscopy. The sample set consisted of growing contour feathers from 23 male and 23 female turkey poults. Significant spectral variations were observed in the range between 1,000 and 1,250 cm−1. The spectra of male turkey poults exhibit a significantly higher content of RNA than those of female turkeys. Spectral classification was performed by a non-supervised method based on the principal component analysis. An evaluation of the first and third PCs led to a classification of female and male poults with an accuracy of more than 95%.


Bioanalytical methods IR spectroscopy/Raman spectroscopy Biological samples 



The authors are indebted to the Hessen Ministry for Environment, Agriculture and Consumer Protection for the financial support. This research was also supported by the German Federal Agency for Agriculture and Food (BLE).


  1. 1.
    Ritchie BW, Harrison GJ, Harrison LR (1994) Avian medicine: principles and application. Wingers, Lake Worth, FloridaGoogle Scholar
  2. 2.
    Bezzel E, Prinzinger R (1990) Ornithologie. Ulmer, StuttgartGoogle Scholar
  3. 3.
    Crawford RD (1990) (ed): Poultry breeding and genetics. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Griffiths R, Double MC, Orr K, Dawson JG (1998) Mol Ecol 7:1071–1075CrossRefGoogle Scholar
  5. 5.
    Oddie KR, Griffiths R (2002) Falw 20:16–18Google Scholar
  6. 6.
    Lessells C, Mateman A (1998) Mol Ecol 7:187–195CrossRefGoogle Scholar
  7. 7.
    Preisinger R (2003) World's Poult Sci J 59:52–56Google Scholar
  8. 8.
    Seemann G (2003) World's Poult Sci J 59:57–59Google Scholar
  9. 9.
    Harz M, Krause M, Bartels T, Cramer K, Rösch P, Popp J (2008) Anal Chem 80:1080–1086CrossRefGoogle Scholar
  10. 10.
    Bhargava R (2007) Anal Bioanal Chem 389:1155–1169CrossRefGoogle Scholar
  11. 11.
    Petibois C, Deleris G (2006) Trends Biotech 24:455–461CrossRefGoogle Scholar
  12. 12.
    Movasaghi Z, Rehman S, Rehman I (2008) Appl Spectrosc Rev 43:134–179CrossRefGoogle Scholar
  13. 13.
    Lasch P, Beekes M, Schmitt J, Naumann D (2007) Anal Bioanal Chem 387:1791–1800CrossRefGoogle Scholar
  14. 14.
    Yu P, McKinnon JJ, Christensen CR, Christensen DA (2004) J Agric Food Chem 52:7353–7361CrossRefGoogle Scholar
  15. 15.
    Barone JR, Arikan O (2007) Polym Degrad Stab 91:859–867CrossRefGoogle Scholar
  16. 16.
    King AS, McLelland J (1985) (eds) Form and Function in Birds, vol 3. Academic, LondonGoogle Scholar
  17. 17.
    Fabian H, Jackson M, Murphy L, Watson PH, Fichtner I, Mantsch HH (1995) Biospectr 1:37–45CrossRefGoogle Scholar
  18. 18.
    Wong PTT, Papavassiliou ED, Rigas B (1991) Appl Spectrosc 45:1563–1567CrossRefGoogle Scholar
  19. 19.
    Liu KZ, Man A, Dembinski TC, Shaw RA (2007) Anal Bioanal Chem 387:1809–1814CrossRefGoogle Scholar
  20. 20.
    Chirboga L, Yee H, Diem M (2000) Appl Spectrosc 54:1–8CrossRefGoogle Scholar
  21. 21.
    Wang Q, Sanad W, Miller LM, Voigt A, Klingel K, Kandolf R, Stangl K, Baumann G (2005) Vibr Spectrosc 38:127–222Google Scholar
  22. 22.
    Mourant JR, Yamada YR, Carpenter S, Dominique LR, Freyer JP (2003) Biophys J 85:1938–1947CrossRefGoogle Scholar
  23. 23.
    Mordechai S, Sahu RK, Hammody Z, Mark S, Kantarovich K, Guterman H, Podshyvalov A, Goldstein J, Argov S (2003) J Microscopy 215:86–91CrossRefGoogle Scholar
  24. 24.
    Andrus PGL, Strickland RD (1998) Biospectr 4:37–46CrossRefGoogle Scholar
  25. 25.
    Boydston-White S, Gopen T, Houser S, Bargonetti J, Diem M (1999) Biospectroscopy 5:219–227CrossRefGoogle Scholar
  26. 26.
    Diem M, Griffiths PR, Chalmers JM (2008) Vibrational spectroscopy for medical diagnosis. Wiley, West SussexGoogle Scholar
  27. 27.
    Phelps P, Bhutada A, Bryan S, Chalker A, Ferrell B, Neuman S, Ricks C, Tran H, Butt T (2003) World's Poult Sci J 59:32–37Google Scholar
  28. 28.
    Dovbeshko GI, Gridina NY, Kruglova EB, Pashchuk OP (2000) Talanta 53:233–246CrossRefGoogle Scholar
  29. 29.
    Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, West SussexGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gerald Steiner
    • 1
    Email author
  • Thomas Bartels
    • 2
  • Maria-Elisabeth Krautwald-Junghanns
    • 2
  • Alois Boos
    • 3
  • Edmund Koch
    • 1
  1. 1.Medical Faculty Carl Gustav Carus, Clinical Sensoring and MonitoringDresden University of TechnologyDresdenGermany
  2. 2.Faculty of Veterinary Medicine, Clinic for Birds and ReptilesUniversity of LeipzigLeipzigGermany
  3. 3.Vetsuisse Faculty, Institute of Veterinary AnatomyUniversity of ZurichZurichSwitzerland

Personalised recommendations