Analytical and Bioanalytical Chemistry

, Volume 396, Issue 2, pp 631–640 | Cite as

Effects of 17β-trenbolone in male eelpout Zoarces viviparus exposed to ethinylestradiol

  • Yohana M. Velasco-Santamaría
  • Steffen S. Madsen
  • Poul Bjerregaard
  • Bodil Korsgaard
Original Paper

Abstract

To evaluate the interaction between 17β-trenbolone (TB) and 17α-ethinylestradiol (EE2), male eelpout, Zoarces viviparus, was exposed for 21 days (April to May 2008) to 5 ng l−1 EE2 and 5 or 20 ng l−1 TB, separately or in combination in a flow-through SW system. The effects on hepatosomatic (HSI) and gonadosomatic index (GSI), plasma vitellogenin (Vtg) concentration, gonadal histology, hepatic and testicular Vtg mRNA and estrogen receptor (ERα) mRNA expression were investigated. No effects on HSI were observed. A significant decrease was observed in the GSI of all males exposed to EE2 (<0.7%) when compared to controls (1.4%). Histological alterations and immature stages were observed in the testis of all exposed males; however, males exposed to EE2 were the most affected. Increased tubule number and proportionally decreased tubule diameter were observed in the testis of all EE2 groups. No effects in Vtg mRNA expression were observed in the testis; however, a significant decrease in testis ERα mRNA was observed in males exposed to 20 ng l−1 TB. The groups exposed to EE2 showed a significant increase in plasma Vtg (>300-fold), hepatic Vtg mRNA (>450-fold), and ERα mRNA (>100-fold) when compared to controls. This study shows that lower concentrations of 17β-trenbolone are unable to counteract the EE2 estrogenic effects when the exposure is simultaneous.

Figure

Microphotograph of testis eelpout (Zoarces viviparus) after 21 days exposure to solvent control (left side) and 5 ng l-1 EE2 (right side). The squares correspond to an area of 500 μm2 and the drawing lines show the longer diameter of the tubules. Sections were 5 μm thickness and stained with H&E.

Keywords

Eelpout Histology RT–PCR Vitellogenin Trenbolone Ethinylestradiol 

References

  1. 1.
    Kolpin D, Furlong E, Meyer M, Thurman E, Zaugg S, Barber L, Buxton H (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  2. 2.
    Snyder SA, Westerhoff P, Yoon Y, Sedlak DL (2003) Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ Eng Sci 20:449–469CrossRefGoogle Scholar
  3. 3.
    Galbraith H (2002) Hormones in international meat production: biological, sociological and consumer issues. Nutr Res Rev 15:293–314CrossRefGoogle Scholar
  4. 4.
    U.S. EPA (2004) Effluent guidelines meat and poultry products (MPP). United States Environmental Protection Agency, WashingtonGoogle Scholar
  5. 5.
    Sellin MK, Snow DD, Gustafson ST, Erickson GE, Kolok AS (2009) The endocrine activity of beef cattle wastes: do growth-promoting steroids make a difference? Aquat Toxicol 92:221–227CrossRefGoogle Scholar
  6. 6.
    Davis KB, Morrison J, Galvez JI (2000) Reproductive characteristics of adult channel catfish treated with trenbolone acetate during the phenocritical period of sex differentiation. Aquaculture 189:351–360CrossRefGoogle Scholar
  7. 7.
    Ankley GT, Jensen KM, Makynen EA, Kahl MD, Korte JJ, Hornung MW, Henry TR, Denny JS, Leino RL, Wilson VS, Cardon MC, Hartig PC, Gray LE (2003) Effects of the androgenic growth promoter 17-β-trenbolone on fecundity and reproductive endocrinology of the fathead minnow. Environ Toxicol Chem 22:1350–1360CrossRefGoogle Scholar
  8. 8.
    Seki M, Fujishima S, Nozaka T, Maeda M, Kobayashi K (2006) Comparison of response to 17β-estradiol and 17β-trenbolone among three small fish species. Environ Toxicol Chem 25:2742–2752CrossRefGoogle Scholar
  9. 9.
    Hemmer MJ, Hemmer BL, Bowman CJ, Kroll KJ, Folmar LC, Marcovich D, Hoglund MD, Denslow ND (2001) Effects of p-nonylphenol, methoxychlor, and endosulfan on vitellogenin induction and expression in sheepshead minnow (Cyprinodon variegatus). Environ Toxicol Chem 20:336–343CrossRefGoogle Scholar
  10. 10.
    Orlando EF, Kolok AS, Binzcik GA, Gates JL, Horton MK, Lambright CS, Gray LE, Soto AM, Guillette LJ (2004) Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow. Environ Health Persp 112:353–358CrossRefGoogle Scholar
  11. 11.
    Wilson VS, Lambright C, Ostby J, Gray LE Jr (2002) In vitro and in vivo effects of 17β-trenbolone: a feedlot effluent contaminant. Toxicol Sci 70:202–211CrossRefGoogle Scholar
  12. 12.
    Dorts J, Richter CA, Wright-Osment MK, Ellersieck MR, Carter BJ, Tillitt DE (2009) The genomic transcriptional response of female fathead minnows (Pimephales promelas) to an acute exposure to the androgen, 17β-trenbolone. Aquat Toxicol 91:44–53CrossRefGoogle Scholar
  13. 13.
    Zhang X, Hecker M, Park J-W, Tompsett AR, Newsted J, Nakayama K, Jones PD, Au D, Kong R, Wu RSS, Giesy JP (2008) Real-time PCR array to study effects of chemicals on the hypothalamic–pituitary–gonadal axis of the Japanese medaka. Aquat Toxicol 88:173–182CrossRefGoogle Scholar
  14. 14.
    Langston WJ, Burt GR, Chesman BS, Vane CH (2005) Partitioning, bioavailability and effects of oestrogens and xeno-oestrogens in the aquatic environment. J Mar Biol Assoc UK 85:1–31CrossRefGoogle Scholar
  15. 15.
    Werner J, Wautier K, Evans RE, Baron CL, Kidd K, Palace V (2003) Waterborne ethynylestradiol induces vitellogenin and alters metallothionein expression in lake trout (Salvelinus namaycush). Aquat Toxicol 62:321–328CrossRefGoogle Scholar
  16. 16.
    Bjerregaard P, Hansen PR, Larsen KJ, Erratico C, Korsgaard B, Holbech H (2008) Vitellogenin as a biomarker for estrogenic effects in brown trout, Salmo trutta: laboratory and field investigations. Environ Toxicol Chem 27:2387–2396CrossRefGoogle Scholar
  17. 17.
    Hashimoto S, Watanabe E, Ikeda M, Terao Y, Strüssmann C, Inoue M, Hara A (2009) Effects of ethinylestradiol on medaka (Oryzias latipes) as measured by sperm motility and fertilization success. Arch Environ Contam Toxicol 56:253–259CrossRefGoogle Scholar
  18. 18.
    Körner O, Kohno S, Schönenberger R, Suter MJF, Knauer K, Guillette LJ Jr, Burkhardt-Holm P (2008) Water temperature and concomitant waterborne ethinylestradiol exposure affects the vitellogenin expression in juvenile brown trout (Salmo trutta). Aquat Toxicol 90:188–196CrossRefGoogle Scholar
  19. 19.
    Vetemaa M, Sandström O, Förlin L (1997) Chemical industry effluent impacts on reproduction and biochemistry in a North Sea population of viviparous blenny (Zoarces viviparus). J Aquat Ecosyst Stress Recovery 6:33–41CrossRefGoogle Scholar
  20. 20.
    Christiansen T, Korsgaard B, Jespersen Å (1998) Induction of vitellogenin synthesis by nonylphenol and 17β-estradiol and effects on the testicular structure in the eelpout Zoarces viviparus. Mar Environ Res 46:141–144CrossRefGoogle Scholar
  21. 21.
    Andreassen TK, Skjoedt K, Korsgaard B (2005) Upregulation of estrogen receptor α and vitellogenin in eelpout (Zoarces viviparus) by waterborne exposure to 4-tert-octylphenol and 17β-estradiol. Comp Biochem Physiol C Toxicol Pharmacol 140:340–346CrossRefGoogle Scholar
  22. 22.
    Korsgaard B (2006) Effects of the model androgen methyltestosterone on vitellogenin in male and female eelpout, Zoarces viviparus (L). Mar Environ Res 62:S205–S210CrossRefGoogle Scholar
  23. 23.
    Rasmussen TH, Teh SJ, Bjerregaard P, Korsgaard B (2005) Anti-estrogen prevents xenoestrogen-induced testicular pathology of eelpout (Zoarces viviparus). Aquat Toxicol 72:177–194CrossRefGoogle Scholar
  24. 24.
    Korsgaard B, Pedersen LK (1998) Vitellogenin in Zoarces viviparus: purification, quantification by ELISA and induction by estradiol-17Β and 4-nonylphenol. Comp Biochem Physiol C Pharmacol Toxicol 120:159–166Google Scholar
  25. 25.
    Rozen S, Skaletsky H (1999) No chap. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols. Humana, Totowa, pp 365–386CrossRefGoogle Scholar
  26. 26.
    Hassanin A, Kuwahara S, Nurhidayat TY, Ogawa K, Hiramatsu K, Sasaki F (2002) Gonadosomatic index and testis morphology of common carp (Cyprinus carpio) in rivers contaminated with estrogenic chemicals. J Vet Med Sci 64:921–926CrossRefGoogle Scholar
  27. 27.
    Nielsen L, Baatrup E (2006) Quantitative studies on the effects of environmental estrogens on the testis of the guppy, Poecilia reticulata. Aquat Toxicol 80:140–148CrossRefGoogle Scholar
  28. 28.
    Leino RL, Jensen KM, Ankley GT (2005) Gonadal histology and characteristic histopathology associated with endocrine disruption in the adult fathead minnow (Pimephales promelas). Environ Toxicol Pharmacol 19:85–98CrossRefGoogle Scholar
  29. 29.
    Weber LP, Hill RL, Janz DM (2003) Developmental estrogenic exposure in zebrafish (Danio rerio): II. Histological evaluation of gametogenesis and organ toxicity. Aquat Toxicol 63:431–446CrossRefGoogle Scholar
  30. 30.
    Länge R, Hutchinson TH, Croudace CP, Siegmund F, Schweinfurth H, Hampe P, Panter GH, Sumpter JP (2001) Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1216–1227CrossRefGoogle Scholar
  31. 31.
    Cevasco A, Urbatzka R, Bottero S, Massari A, Pedemonte F, Kloas W, Mandich A (2008) Endocrine disrupting chemicals (EDC) with (anti)estrogenic and (anti)androgenic modes of action affecting reproductive biology of Xenopus laevis: II. Effects on gonad histomorphology. Comp Biochem Physiol C Toxicol Pharmacol 147:241–251CrossRefGoogle Scholar
  32. 32.
    Schulz RW, de França LR, Lareyre JJ, LeGac F, Chiarini-Garcia H, Nobrega RH, Miura T (2009) Spermatogenesis in fish. Gen Comp Endocr (in press)Google Scholar
  33. 33.
    Shimomura K, Shimada M, Hagiwara M, Harada S, Kato M, Furuhama K (2005) Insights into testicular damage induced by ethinylestradiol in rats. Reprod Toxicol 20:157–163CrossRefGoogle Scholar
  34. 34.
    Örn S, Yamani S, Norrgren L (2006) Comparison of vitellogenin induction, sex ratio, and gonad morphology between zebrafish and Japanese medaka after exposure to 17α-ethinylestradiol and 17β-trenbolone. Arch Environ Contam Toxicol 51:237–243CrossRefGoogle Scholar
  35. 35.
    Martyniuk CJ, Denslow ND (2009) Towards functional genomics in fish using quantitative proteomics. Gen Comp Endocr 164:135–141CrossRefGoogle Scholar
  36. 36.
    Soverchia L, Ruggeri B, Palermo F, Mosconi G, Cardinaletti G, Scortichini G, Gatti G, Polzonetti-Magni AM (2005) Modulation of vitellogenin synthesis through estrogen receptor beta-1 in goldfish (Carassius auratus) juveniles exposed to 17-β estradiol and nonylphenol. Toxicol Appl Pharmacol 209:236–243CrossRefGoogle Scholar
  37. 37.
    Leaños-Castañeda O, Van Der Kraak G (2007) Functional characterization of estrogen receptor subtypes, ERα and ERβ, mediating vitellogenin production in the liver of rainbow trout. Toxicol Appl Pharmacol 224:116–125CrossRefGoogle Scholar
  38. 38.
    Andreassen TK, Skjoedt K, Anglade I, Kah O, Korsgaard B (2003) Molecular cloning, characterisation, and tissue distribution of oestrogen receptor alpha in eelpout (Zoarces viviparus). Gen Comp Endocr 132:356–368CrossRefGoogle Scholar
  39. 39.
    Jin YX, Wang WY, Sheng GD, Liu WP, Fu ZW (2008) Hepatic and extrahepatic expression of estrogen-responsive genes in male adult zebrafish (Danio rerio) as biomarkers of short-term exposure to 17 β-estradiol. Environ Monit Assess 146:105–111CrossRefGoogle Scholar
  40. 40.
    Schiffer B, Daxenberger A, Meyer K, Meyer HHD (2001) The fate of trenbolone acetate and melengestrol acetate after application as growth promoters in cattle: environmental studies. Environ Health Persp 109:1145–1151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yohana M. Velasco-Santamaría
    • 1
  • Steffen S. Madsen
    • 1
  • Poul Bjerregaard
    • 1
  • Bodil Korsgaard
    • 1
  1. 1.Institute of BiologyUniversity of Southern Denmark, OdenseOdense MDenmark

Personalised recommendations