Analytical and Bioanalytical Chemistry

, Volume 396, Issue 1, pp 45–52

Development of tip-enhanced optical spectroscopy for biological applications: a review

  • Alistair P. D. Elfick
  • Andrew R. Downes
  • Rabah Mouras
Review

Abstract

Tip-enhanced optical spectroscopy is an approach that holds a good deal of promise for the nanoscale characterisation of matter. Tip-enhanced Raman spectroscopy (TERS) has been demonstrated on a variety of samples: inorganic, organic and biological. Imaging using TERS has been shown for carbon nanotubes due to their high scattering efficiency. There are a number of compelling motivations to consider alternative approaches for biological samples; most importantly, the potential for heat damage of biomolecules and long acquisition times. These issues may be addressed through the development of tip-enhanced coherent anti-Stokes Raman scattering microscopy.

Keywords

TERS Raman Near-field Biological samples tip-enhanced CARS 

References

  1. 1.
    McWilliams A (2008) Nanotechnology: a realistic market assessment. BCC Research, Wellesley (see http://www.bccresearch.com/report/NANO31C.html)
  2. 2.
    Rothemund PWK (2006) Nature 440:297–302CrossRefGoogle Scholar
  3. 3.
    Abbe E (1873) Arch Mikrosc Anat 9:413–468Google Scholar
  4. 4.
    Betzig E, Finn PL, Weiner JS (1992) Appl Phys Lett 60:2484–2486CrossRefGoogle Scholar
  5. 5.
    Betzig E, Trautman JK (1992) Science 257:189–195CrossRefGoogle Scholar
  6. 6.
    Novotny L, Pohl DW (1995) NATO ASI Ser E184:21–33Google Scholar
  7. 7.
    Zenhausern F, O′Boyle MP, Wickramasinghe HK (1994) Appl Phys Lett 65:1623CrossRefGoogle Scholar
  8. 8.
    Zenhausern F, Martin Y, Wickramasinghe HK (1995) Science 269:1083–1085CrossRefGoogle Scholar
  9. 9.
    Hillenbrand R, Keilman F (2000) Phys Rev Lett 85:3029–3032CrossRefGoogle Scholar
  10. 10.
    Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136CrossRefGoogle Scholar
  11. 11.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:96101CrossRefGoogle Scholar
  12. 12.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2005) J Raman Spectrosc 36:514–550CrossRefGoogle Scholar
  13. 13.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Chem Phys Lett 335:369–374CrossRefGoogle Scholar
  14. 14.
    Downes A, Mouras R, Mari M, Elfick A (2009) J Raman Spectrosc (in press)Google Scholar
  15. 15.
    Neacsu CC, Dreyer J, Behr N, Raschke NB (2006) Phys Rev B 73:193406Google Scholar
  16. 16.
    Domke KF, Zhang D, Pettinger B (2006) J Am Chem Soc 128:14721–14727CrossRefGoogle Scholar
  17. 17.
    Zhang W, Cui Yeo B-S, Schmid T, Hafner C, Zenobi R (2007) Nano Lett 7:1401–1405CrossRefGoogle Scholar
  18. 18.
    Hartschuh A, Pedrosa HN, Novotny L, Krauss TD (2003) Science 301:1354–1356CrossRefGoogle Scholar
  19. 19.
    Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S (2003) Chem Phys Lett 376:174–180CrossRefGoogle Scholar
  20. 20.
    Anderson N, Hartschuh A, Novotny L (2007) Nano Lett 7:577–582CrossRefGoogle Scholar
  21. 21.
    Anderson N, Anger P, Hartschuh A, Novotny L (2006) Nano Lett 6:744–749CrossRefGoogle Scholar
  22. 22.
    Hartschuh A, Sanchez EJ, Xie XS, Novotny L (2003) Phys Rev Lett 90:95503CrossRefGoogle Scholar
  23. 23.
    Anderson N, Hartschuh A, Cronin S, Novotny L (2004) J Am Chem Soc 127:2533–2537CrossRefGoogle Scholar
  24. 24.
    Roy D, Wang J, Welland ME (2006) Faraday Discuss 132:215–226CrossRefGoogle Scholar
  25. 25.
    Feynman RP (1960) Eng Sci 23:22–26Google Scholar
  26. 26.
    Kodama T, Umezawa T, Watanabe S, Ohtani H (2008) J Microsc 229:240–246CrossRefGoogle Scholar
  27. 27.
    Gan Y (2007) Rev Sci Instrum 78:081101CrossRefGoogle Scholar
  28. 28.
    Ghenuche P, Cherukulappurath S, Taminiau T, Van Hulst NF, Quidan R (2008) Phys Rev Lett 101:116805CrossRefGoogle Scholar
  29. 29.
    Ren B, Picardi G, Pettinger B (2004) Rev Sci Instrum 75:837CrossRefGoogle Scholar
  30. 30.
    Eligal L, Culfaz F, McCaughan V, Cade NI, Richards D (2009) Rev Sci Instrum 80:0333701Google Scholar
  31. 31.
    Pan SH, Hudson EW, Davis JC (1998) Appl Phys Lett 73:2992CrossRefGoogle Scholar
  32. 32.
    Lin MF, Shung KW-K (1994) Phys Rev B 50:17744–17747CrossRefGoogle Scholar
  33. 33.
    Hillenbrand R, Keilmann F, Hanarp P, Sutherland DS, Aizpurua J (2003) Appl Phys Lett 83:368–370Google Scholar
  34. 34.
    de Wilde Y, Formanek F, Carminati R, Gralak B, Lemoine P-A, Joulain K, Mulet J-P, Chen Y, Greffet J-J (2006) Nature 444:740–743CrossRefGoogle Scholar
  35. 35.
    Brehm M, Taubner T, Hillenbrand R, Keilmann F (2006) Nano Lett 6:1307–13010CrossRefGoogle Scholar
  36. 36.
    Yeo B-S, Schmid T, Zhang W, Zenobi R (2007) Anal Bioanal Chem 387:2655–2662CrossRefGoogle Scholar
  37. 37.
    Taguchi A, Hayazawa N, Saito Y, Ishitobi H, Tarun A, Kawata S (2009) Opt Express 17:6509–6518CrossRefGoogle Scholar
  38. 38.
    Ikeda K, Fujimoto N, Uehara H, Uosaki K (2008) Chem Phys Lett 460:205–208CrossRefGoogle Scholar
  39. 39.
    Notingher I, Elfick A (2005) J Phys Chem B 109:15699–15706CrossRefGoogle Scholar
  40. 40.
    Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Surf Sci 603:1335–1341CrossRefGoogle Scholar
  41. 41.
    Downes A, Salter D, Elfick A (2006) J Phys Chem B 110:6692–6698CrossRefGoogle Scholar
  42. 42.
    Downes A, Salter D, Elfick A (2008) J Microsc Oxford 229:184–188Google Scholar
  43. 43.
    Domke KF, Zhang D, Pettinger B (2007) J Phys Chem C 111:8611–8616CrossRefGoogle Scholar
  44. 44.
    Karrai K, Grober RD (1995) Appl Phys Lett 66:1842–1844CrossRefGoogle Scholar
  45. 45.
    Rensen WHJ, van Hulst NF, Kammer SB (2000) Appl Phys Lett 77:1557–1559CrossRefGoogle Scholar
  46. 46.
    Albrecht TR, Grütter P, Horne D, Rugar D (1991) J Appl Phys 69:668–673CrossRefGoogle Scholar
  47. 47.
    Higgins MJ, Reiner C, Uchihashi T, Sader JE, McKendry R, Jarvis SP (2005) Nanotechnology 16:S85–S89CrossRefGoogle Scholar
  48. 48.
    Hembacher S, Giessibl FJ, Mannhart J (2004) Science 305:380–383CrossRefGoogle Scholar
  49. 49.
    Downes A, Welland ME (1998) Phys Rev Lett 81:1857–1860CrossRefGoogle Scholar
  50. 50.
    Downes A, Dumas P (2002) Appl Surf Sci 212–213:770–774Google Scholar
  51. 51.
    Downes A, Salter D, Elfick A (2006) Opt Express 14:11324–11329CrossRefGoogle Scholar
  52. 52.
    Mangum BD, Mu C, Gerton JM (2008) Opt Express 16:6183–6193CrossRefGoogle Scholar
  53. 53.
    Sánchez E, Novotny L, Xie XS (1999) Phys Rev Lett 82:4014–4017CrossRefGoogle Scholar
  54. 54.
    Hayazawa N, Furusawa K, Taguchi A, Kawata S, Hiroshi A (2009) Appl Phys Lett 94:193112CrossRefGoogle Scholar
  55. 55.
    Hartschuh A, Qian H, Meixner AJ, Anderson N, Novotny L (2006) Surf Interface Anal 38:1472–1480CrossRefGoogle Scholar
  56. 56.
    Rasmussen A, Deckert V (2006) J Raman Spectrosc 37:311–317CrossRefGoogle Scholar
  57. 57.
    Cialla D, Deckert-Gaudig T, Budich C, Laue M, Möller R, Naumann D, Deckert V, Popp J (2009) J Raman Spectrosc 40:240–243CrossRefGoogle Scholar
  58. 58.
    Yeo B-S, Madler S, Schmid T, Zhang W, Zenobi R (2008) J Phys Chem C 112:4867–4873CrossRefGoogle Scholar
  59. 59.
    Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Chem Phys Lett 472:1–13CrossRefGoogle Scholar
  60. 60.
    Neugebauer U, Rosch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) ChemPhysChem 7:1428–1430CrossRefGoogle Scholar
  61. 61.
    Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) ChemPhysChem 8:124–137CrossRefGoogle Scholar
  62. 62.
    Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Phys Rev Lett 92:220801Google Scholar
  63. 63.
    Geshev P, Klein S, Witting T, Dickmann K, Hietschold M (2004) Phys Rev B 70:75402CrossRefGoogle Scholar
  64. 64.
    Zhang W, Schmid T, Yeo B-S, Zenobi R (2008) J Phys Chem C 112:2104–2108CrossRefGoogle Scholar
  65. 65.
    Duncan MD, Reinjtes J, Manuccia TJ (1982) Opt Lett 7:350–352CrossRefGoogle Scholar
  66. 66.
    Zumbusch A, Holtom GR, Xie XS (1999) Phys Rev Lett 82:4142–4145CrossRefGoogle Scholar
  67. 67.
    Cheng JX, Jia KJ, Zheng G, Xie XS (2002) Biophys J 83:502–509CrossRefGoogle Scholar
  68. 68.
    Evans CL, Potma EO, Puoris′haag M, Côté D, Lin CP, Xie XS (2005) Proc Natl Acad Sci 102:16807CrossRefGoogle Scholar
  69. 69.
    Moger J, Johnston BD, Tyler CR (2008) Opt Express 16:3408–3419CrossRefGoogle Scholar
  70. 70.
    Schaller RD, Ziegelbauer J, Lee LF, Haber LH, Saykally RJ (2002) J Phys Chem B 106:8489–8492CrossRefGoogle Scholar
  71. 71.
    Downes A, Mouras R, Elfick A (2009) J Raman Spectrosc 40:757–762CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alistair P. D. Elfick
    • 1
  • Andrew R. Downes
    • 1
  • Rabah Mouras
    • 1
  1. 1.Centre for Biomedical Engineering, The School of EngineeringThe University of EdinburghEdinburghUK

Personalised recommendations