Advertisement

Analytical and Bioanalytical Chemistry

, Volume 396, Issue 1, pp 53–71 | Cite as

Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging

  • F. Deiss
  • N. Sojic
  • D. J. White
  • P. R. Stoddart
Review

Abstract

Optical fibre bundles usually comprise a few thousand to tens of thousands of individually clad glass optical fibres. The ordered arrangement of the fibres enables coherent transmission of an image through the bundle and therefore enables analysis and viewing in remote locations. In fused bundles, this architecture has also been used to fabricate arrays of various micro to nano-scale surface structures (micro/nanowells, nanotips, triangles, etc.) over relatively large areas. These surface structures have been used to obtain new optical and analytical capabilities. Indeed, the imaging bundle can be thought of as a “starting material” that can be sculpted by a combination of fibre drawing and selective wet-chemical etching processes. A large variety of bioanalytical applications have thus been developed, ranging from nano-optics to DNA nanoarrays. For instance, nanostructured optical surfaces with intrinsic light-guiding properties have been exploited as surface-enhanced Raman scattering (SERS) platforms and as near-field probe arrays. They have also been productively associated with electrochemistry to fabricate arrays of transparent nanoelectrodes with electrochemiluminescent imaging properties. The confined geometry of the wells has been loaded with biosensing materials and used as femtolitre-sized vessels to detect single molecules. This review describes the fabrication of high-density nanostructured optical fibre arrays and summarizes the large range of optical and bioanalytical applications that have been developed, reflecting the versatility of this ordered light-guiding platform.

Keywords

Nanosensor array Biosensor Imaging SERS Electrochemistry Single molecule detection Optical fibre sensors 

Notes

Acknowledgements

NS and FD thank the Agence Nationale pour la Recherche (Programme en Nanosciences et Nanotechnologies ANR-05-NANO-048), the CNRS and the Région Aquitaine for financial support. The contribution of PRS and DJW to this work was supported by the National Health and Medical Research Council through Development Grant 448610.

References

  1. 1.
    Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595–2626CrossRefGoogle Scholar
  2. 2.
    LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614–637CrossRefGoogle Scholar
  3. 3.
    Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Gen 21:20–24CrossRefGoogle Scholar
  4. 4.
    Matsuzaki H, Dong SL, Loi H, Di XJ, Liu GY, Hubbell E, Law J, Berntsen T, Chadha M, Hui H, Yang GR, Kennedy GC, Webster TA, Cawley S, Walsh PS, Jones KW, Fodor SPA, Mei R (2004) Genotyping over 100, 000 SNPs on a pair of oligonucleotide arrays. Nat Meth 1:109–111CrossRefGoogle Scholar
  5. 5.
    Singh-Gasson S, Green RD, Yue YJ, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol 17:974–978CrossRefGoogle Scholar
  6. 6.
    Monk DJ, Walt DR (2004) Optical fiber-based biosensors. Anal Bioanal Chem 379:931–945CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Kapany NS (1959) High-resolution fibre optics using sub-micron multiple fibres. Nature 184:881–883CrossRefGoogle Scholar
  10. 10.
    Pantano P, Walt DR (1995) Analytical applications of optical imaging fibers. Anal Chem 67:481A–487ACrossRefGoogle Scholar
  11. 11.
    Knight JC (2003) Photonic crystal fibres. Nature 424:847–851CrossRefGoogle Scholar
  12. 12.
    Laegsgaard J, Bjarklev A (2006) Microstructured optical fibers - Fundamentals and applications. J Am Ceram Soc 89:2–12CrossRefGoogle Scholar
  13. 13.
    Dubaj V, Mazzolini A, Wood A, Harris M (2002) Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope. J Microsc-Oxf 207:108–117CrossRefGoogle Scholar
  14. 14.
    Flusberg BA, Cocker ED, Piyawattanametha W, Jung JC, Cheung ELM, Schnitzer MJ (2005) Fiber-optic fluorescence imaging. Nature Methods 2:941–950CrossRefGoogle Scholar
  15. 15.
    Kapany NS (1965) In: Patent US (ed) Method of making a fiber optical bundle. American Optical Company, United StatesGoogle Scholar
  16. 16.
  17. 17.
    Ghaemi HF, Li Y, Thio T, Wang T (1998) Fiber image guide with subwavelength resolution. Appl Phys Lett 72:1137–1139CrossRefGoogle Scholar
  18. 18.
    Yoshimura K, Higashimoto T, Ono T (1983) Image-transmitting bundled optical fibers. In: Patent US (ed), Sumitomo Electric Industries LtdGoogle Scholar
  19. 19.
    Hayami H, Utsumi A (1991) In: Patent US (ed) Method of producing optical multiple fiber. Dainichi-Nippon Cables Ltd, United StatesGoogle Scholar
  20. 20.
    Utsumi A, Noguchi M (1984) In: Patent US (ed) Method for producing optical multiple fiber. Dainichi-Nippon Cables Ltd, United StatesGoogle Scholar
  21. 21.
    Phaneuf RA, Strack RR (1977) In: Patent US (ed) Optical fiber bundle image conduit. American Optical Corporation, United StatesGoogle Scholar
  22. 22.
    Biran I, Walt DR (2002) Optical imaging fiber-based single live cell arrays: A high-density cell assay platform. Anal Chem 74:3046–3054CrossRefGoogle Scholar
  23. 23.
    Mogi M, Yoshimura K (1989) Development of superhigh density packed image guide. Proc SPIE 1067:172–181Google Scholar
  24. 24.
    Siegmund WP (1961) Fibre optical image transfer device having a multiplicity of light absorbing elements. United States Patent 3(247):756Google Scholar
  25. 25.
    Maheswari RU, Mononobe SJ, Ohtsu M (1995) Control of apex shape of the fiber probe employed in photon scanning tunneling microscope by a multistep etching method. J Lightwave Technol 13:2308–2313CrossRefGoogle Scholar
  26. 26.
    Ohtsu M (1995) Progress of high-resolution photon scanning-tunneling-microscopy due to a nanometric fiber probe. J Lightwave Technol 13:1200–1221CrossRefGoogle Scholar
  27. 27.
    Huntington ST, Mulvaney P, Roberts A, Nugent KA, Bazylenko M (1997) Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A quantitative study. J Appl Phys 82:2730–2734CrossRefGoogle Scholar
  28. 28.
    White DJ, Mazzolini AP, Stoddart PR (2007) Fabrication of a range of SERS substrates on nanostructured multicore optical fibres. J Raman Spectrosc 38:377–382CrossRefGoogle Scholar
  29. 29.
    Hopland S (1985) Characteristics of the etching of undoped silica in MCVD-fabricated optical fibers with buffered hydrofluoric acid. Mater Res Bulletin 20:1367–1372CrossRefGoogle Scholar
  30. 30.
    Buhler J, Steiner FP, Baltes H (1997) Silicon dioxide sacrificial layer etching in surface micromachining. J Micromech Microeng 7:R1–R13CrossRefGoogle Scholar
  31. 31.
    Williams KR, Muller RS (1996) Etch rates for micromachining processing. J Microelectromech Syst 5:256–269CrossRefGoogle Scholar
  32. 32.
    Kikyuama H, Miki N, Saka K, Takano JA, Kawanabe IA, Miyashita MA, Ohmi TA (1991) Principles of wet chemical processing in ULSI microfabrication. IEEE Trans Semicond Manuf 4:26–35CrossRefGoogle Scholar
  33. 33.
    Rudder RA, Thomas RE, Nemanich RJ (1993) Remote plasma processing for silicon wafer cleaning. In: Kern W (ed) Handbook of semiconductor wafer cleaning technology: science, technology and application. Noyes Publications, Park RidgeGoogle Scholar
  34. 34.
    Liu YH, Dam TH, Pantano P (2000) A pH-sensitive nanotip array imaging sensor. Anal Chim Acta 419:215–225CrossRefGoogle Scholar
  35. 35.
    Stjernstrom M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. J Micromech Microeng 8:33–38CrossRefGoogle Scholar
  36. 36.
    Chovin A, Garrigue P, Pecastaings G, Saadaoui H, Manek-Hönninger I, Sojic N (2006) Microarrays of near-field optical probes with adjustable dimensions. Ultramicroscopy 106:57–65CrossRefGoogle Scholar
  37. 37.
    Bernhard DD, Mall S, Pantano P (2001) Fabrication and characterization of microwell array chemical sensors. Anal Chem 73:2484–2490CrossRefGoogle Scholar
  38. 38.
    Pantano P, Walt DR (1996) Ordered nanowell arrays. Chem Mater 8:2832–2835CrossRefGoogle Scholar
  39. 39.
    White DJ, Stoddart PR (2005) Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Optics Lett 30:598–600CrossRefGoogle Scholar
  40. 40.
    White DJ, Mazzolini AP, Stoddart PR (2008) First-approximation simulation of dopant diffusion in nanostructured silica optical fibres. Photonics Nanostruct 6:167–177CrossRefGoogle Scholar
  41. 41.
    Lyytikainen K, Huntington ST, Carter ALG, McNamara P, Fleming S, Abramczyk J, Kaplin I, Schotz G (2004) Dopant diffusion during optical fibre drawing. Opt Express 12:972–977CrossRefGoogle Scholar
  42. 42.
    McNamara P, Lyytikamen KJ, Ryan T, Kaplin IJ, Ringer SP (2004) Germanium-rich, “starburst” cores in silica-based optical fibres fabricated by Modified Chemical Vapour Deposition. Opt Commun 230:45–53CrossRefGoogle Scholar
  43. 43.
    Ma ZY, Ma LY, Su M (2008) Engineering three-dimensional micromirror arrays by fiber-drawing nanomanufacturing for solar energy conversion. Adv Mater 20:3734–3738CrossRefGoogle Scholar
  44. 44.
    Amatore C, Chovin A, Garrigue P, Servant L, Sojic N, Szunerits S, Thouin L (2004) Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle. Anal Chem 76:7202–7210CrossRefGoogle Scholar
  45. 45.
    Dromard T, Lévêque J-L, Sojic N (2007) Remote in vivo imaging of fluorescein-stained corneocytes on human skin. Rev Sci Instrum 78:053709CrossRefGoogle Scholar
  46. 46.
    Flusberg BA, Jung JC, Cocker ED, Anderson EP, Schnitzer MJ (2005) In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt Lett 30:2272–2274CrossRefGoogle Scholar
  47. 47.
    Utzinger U, Richards-Kortum R (2003) Fiber optic probes for biomedical optical spectroscopy. J Biomed Opt 8:121–147CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Davenne M, Custody C, Charneau P, Lledo P-M (2005) In vivo imaging of migrating neurons in the mammalian forebrain. Chem Senses 30:i115–i116CrossRefGoogle Scholar
  50. 50.
    Laemmel E, Genet M, Le Goualher G, Perchant A, Le Gargasson J-F, Vicaut E (2004) Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. J Vasc Res 41:400–411CrossRefGoogle Scholar
  51. 51.
    Petry R, Schmitt M, Popp J (2003) Raman spectroscopy - A prospective tool in the Life Sciences. ChemPhysChem 4:14–30CrossRefGoogle Scholar
  52. 52.
    De Serio M, Zenobi R, Deckert V (2003) Looking at the nanoscale: scanning near-field optical microscopy. Trends Anal Chem 22Google Scholar
  53. 53.
    Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Tip-enhanced Raman spectroscopy - Its status, challenges and future directions. Chem Phys Lett 472:1CrossRefGoogle Scholar
  54. 54.
    Chen S, Han L, Schülzgen A, Li H, Li L, Moloney JV, Peyghambarian N (2008) Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure. Opt Express 16:13016CrossRefGoogle Scholar
  55. 55.
    Chu HV, Liu Y, Huang Y, Zhao Y (2007) A high sensitive fiber SERS probe based on silver nanorod arrays. Opt Express 15:12230CrossRefGoogle Scholar
  56. 56.
    Dhawan A, Muth JF (2008) Engineering surface plasmon based fiber-optic sensors. Mater Sci Eng B 149:237CrossRefGoogle Scholar
  57. 57.
    Geßner R, Rösch P, Petry R, Schmitt M, Strehle MA, Kiefer W, Popp J (2004) The application of a SERS fiber probe for the investigation of sensitive biological samples. Analyst 129:1193–1199CrossRefGoogle Scholar
  58. 58.
    Lucotti A, Pesapane A, Zerbi G (2007) Use of a geometry optimized fiber-optic surface-enhanced Raman scattering sensor in trace detection. Appl Spectrosc 61:260CrossRefGoogle Scholar
  59. 59.
    Lucotti A, Zerbi G (2007) Fiber-optic SERS sensor with optimized geometry. Sens Actuators B 121:356CrossRefGoogle Scholar
  60. 60.
    Mullen KI, Carron KT (1991) Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes. Anal Chem 63:2196–2199CrossRefGoogle Scholar
  61. 61.
    Murphy T, Lucht S, Schmidt H, Kronfeldt H-D (2000) Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water. J Raman Spectrosc 31:943–948CrossRefGoogle Scholar
  62. 62.
    Polwart E, Keir RL, Davidson CM, Smith WE, Sadler DA (2000) Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles. Appl Spectrosc 54:522–527CrossRefGoogle Scholar
  63. 63.
    Stokes DL, Vo-Dinh T (2000) Development of an integrated single-fiber SERS sensor. Sens Actuators B 69:28CrossRefGoogle Scholar
  64. 64.
    Viets C, Hill W (2000) Fibre-optic SERS sensors. Internet J Vib Spectrosc 4:1–13Google Scholar
  65. 65.
    Viets C, Hill W (2001) Fibre-optic SERS sensors with angled tips. J Molecular Structure 565–566:515CrossRefGoogle Scholar
  66. 66.
    Viets C, Hill W (2001) Fibre-optic SERS sensors with conically etched tips. J Molecular Structure 563–564:163CrossRefGoogle Scholar
  67. 67.
    Zheng X, Guo D, Shao Y, Jia S, Xu S, Zhao B, Xu W, Corredor C, Lombardi JR (2008) Photochemical modification of an optical fiber tip with a silver nanoparticle film: A SERS chemical sensor. Langmuir 24:4394–4398CrossRefGoogle Scholar
  68. 68.
    Smythe EJ, Cubukcu E, Capasso F (2007) Optical properties of surface plasmon resonances of coupled metallic nanorods. Opt Express 15:7439CrossRefGoogle Scholar
  69. 69.
    Smythe EJ, Dickey MD, Bao J, Whitesides GM, Capasso F (2009) Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett 9:1132–1138CrossRefGoogle Scholar
  70. 70.
    Smythe EJ, Dickey MD, Whitesides GM, Capasso F (2009) A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano 3:59–65CrossRefGoogle Scholar
  71. 71.
    Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR (2009) Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing. Biosens Bioelectron 24:1531CrossRefGoogle Scholar
  72. 72.
    Guieu V, Lagugne-Labarthet F, Servant L, Talaga D, Sojic N (2008) Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging. Small 4:96–99CrossRefGoogle Scholar
  73. 73.
    Guieu V, Talaga D, Servant L, Sojic N, Lagugne-Labarthet F (2009) Multitip-localized enhanced Raman scattering from a nanostructured optical fiber array. J Phys Chem C 113:874–881CrossRefGoogle Scholar
  74. 74.
    Hankus ME, Li HG, Gibson GJ, Cullum BM (2006) Surface-enhanced Raman scattering-based nanoprobe for high-resolution, non-scanning chemical imaging. Anal Chem 78:7535–7546CrossRefGoogle Scholar
  75. 75.
    Sojic N, Lagugne-Labarthet F, Guieu V, Talaga D, Servant L (2008) Dispositif d’imagerie par spectroscopie Raman et son procede de fabrication. In: French Patent CNRS (ed)Google Scholar
  76. 76.
    Zamuner M, Talaga D, Deiss F, Guieu V, Kuhn A, Ugo P, Sojic N (2009) Fabrication of a macroporous microwell array for surface-enhanced Raman scattering. Adv Funct Mat 19:3129–3135CrossRefGoogle Scholar
  77. 77.
    Pantano P, Walt DR (1997) Toward a near-field optical array. Rev Sci Instrum 68:1357–1359CrossRefGoogle Scholar
  78. 78.
    Tam JM, Song LN, Walt DR (2005) Fabrication and optical characterization of imaging fiber-based nanoarrays. Talanta 67:498–502CrossRefGoogle Scholar
  79. 79.
    White DJ, Mazzolini AP, Stoddart PR (2008) Nanostructured optical fibre for surface-enhanced Raman scattering sensing. Proc SPIE 7102:710202CrossRefGoogle Scholar
  80. 80.
    Cullum BM, Li H, Schiza MV, Hankus ME (2007) Characterization of multilayer-enhanced surface-enhanced Raman scattering (SERS) substrates and their potential for SERS nanoimaging. Nanobiotechnol 3:1–11CrossRefGoogle Scholar
  81. 81.
    Hankus ME, Gibson G, Chandrasekharan N, Cullum BM (2004) Surface-enhanced Raman scattering (SERS): nanoimaging probes for biological analysis. Proc SPIE 5588:106–116CrossRefGoogle Scholar
  82. 82.
    Reichenbach KL, Xu C (2007) Numerical analysis of light propagation in image fibers or coherent fiber bundles. Opt Exp 15:2151–2165CrossRefGoogle Scholar
  83. 83.
    Sumetsky M (2006) How thin can a microfiber be and still guide light? Opt Lett 31:870–872CrossRefGoogle Scholar
  84. 84.
    Guieu V, Lagugné-Labarthet F, Servant L, Sojic N, Talaga D (submitted)Google Scholar
  85. 85.
    Gao L, Seliskar CJ, Heineman WR (1999) Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 4. Sensing with poly(vinyl alcohol)-polyelectrolyte blend modified optically transparent electrodes. Anal Chem 71:4061–4068CrossRefGoogle Scholar
  86. 86.
    Kaval N, Seliskar CJ, Heineman WR (2003) Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 16. Sensing by fluorescence. Anal Chem 75:6334–6340CrossRefGoogle Scholar
  87. 87.
    Shi Y, Slaterbeck AF, Seliskar CJ, Heineman WR (1997) Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 1. Demonstration of concept with ferricyanide. Anal Chem 69:3679–3686CrossRefGoogle Scholar
  88. 88.
    Shtoyko T, Maghasi AT, Richardson JN, Seliskar CJ, Heineman WR (2003) Spectroelectrochemical sensing based on attenuated total internal reflectance stripping voltammetry. 1. Determination of lead and cadmium. Anal Chem 75:4585–4590CrossRefGoogle Scholar
  89. 89.
    Woltman SJ, Even WR, Weber SG (1999) Chromatographic detection using Tris(2, 2′-bipyridyl)ruthenium(III) as a fluorogenic electron-transfer reagent. Anal Chem 71:1504–1512CrossRefGoogle Scholar
  90. 90.
    Zhan W, Alvarez J, Crooks RM (2003) A two-channel microfluidic sensor that uses anodic electrogenerated chemiluminescence as a photonic reporter of cathodic redox reactions. Anal Chem 75:313–318CrossRefGoogle Scholar
  91. 91.
    Jin ES, Norris BJ, Pantano P (2001) An electrogenerated chemiluminescence imaging fiber electrode chemical sensor for NADH. Electroanalysis 13:1287–1290CrossRefGoogle Scholar
  92. 92.
    Khan SS, Jin ES, Sojic N, Pantano P (2000) A fluorescence-based imaging fiber electrode chemical sensor for hydrogen peroxide. Anal Chim Acta 404:213–221CrossRefGoogle Scholar
  93. 93.
    Konry T, Novoa A, Cosnier S, Marks RS (2003) Development of an electroptode immunosensor: indium tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated cholera Toxin B subunit. Anal Chem 75:2633–2639CrossRefGoogle Scholar
  94. 94.
    Lee Y, Amemiya S, Bard AJ (2001) Scanning electrochemical microscopy. 41. Theory and characterization of ring electrodes. Anal Chem 73:2261–2267CrossRefGoogle Scholar
  95. 95.
    Lee Y, Bard AJ (2002) Fabrication and characterization of probes for combined scanning electrochemical/optical microscopy experiments. Anal Chem 74:3626–3633CrossRefGoogle Scholar
  96. 96.
    Szunerits S, Garrigue P, Bruneel J-L, Servant L, Sojic N (2003) Fabrication of a sub-micrometer electrode array: electrochemical characterization and mapping of an electroactive species by confocal Raman microspectroscopy. Electroanalysis 15:548–555CrossRefGoogle Scholar
  97. 97.
    Wang H, Xu G, Dong S (2002) Electrochemiluminescent microoptoprobe with mini-grid working electrode and self-contained sample container. Electrochem Commun 4:214–217Google Scholar
  98. 98.
    Bronk KS, Michael KL, Pantano P, Walt DR (1995) Combined imaging and chemical sensing using a single optical imaging fiber. Anal Chem 67:2750–2757CrossRefGoogle Scholar
  99. 99.
    Konry T, Heyman Y, Cosnier S, Gorgy K, Marks RS (2008) Characterization of thin poly(pyrrole-benzophenone) film morphologies electropolymerized on indium tin oxide coated optic fibers for electrochemical and optical biosensing. Electrochim Acta 53:5128CrossRefGoogle Scholar
  100. 100.
    Lewis BG, Paine DC (2000) Applications and processing of transparent conducting oxides. MRS Bull 25:22–27Google Scholar
  101. 101.
    Wu W-F, Chiou B-S (1994) Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing. Thin Solid Films 247:201–207CrossRefGoogle Scholar
  102. 102.
    Popovich ND, Wong S-S, Yen BKH, Yeom H-Y, Paine DC (2002) Influence of microstructure on the electrochemical performance of tin-doped indium oxide film electrodes. Anal Chem 74:3127–3133CrossRefGoogle Scholar
  103. 103.
    Konry T, Marks RS (2005) Physico-chemical studies of indium tin oxide-coated fiber optic biosensors. Thin Solid Films 492:313CrossRefGoogle Scholar
  104. 104.
    Marks RS, Novoa A, Konry T, Krais R, Cosnier S (2002) Indium tin oxide-coated optical fiber tips for affinity electropolymerization. Mat Sci Eng C 21:189–194CrossRefGoogle Scholar
  105. 105.
    Marks RS, Novoa A, Thomassey D, Cosnier S (2002) An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly(pyrrole-biotin). Anal Bioanal Chem 374:1056–1063CrossRefGoogle Scholar
  106. 106.
    Atias D, Abu-Rabeah K, Herrmann S, Frenkel J, Tavor D, Cosnier S, Marks RS (2009) Poly(methyl methacrylate) conductive fiber optic transducers as dual biosensor platforms. Biosens Bioelectron 24:3683–3687CrossRefGoogle Scholar
  107. 107.
    Konry T, Novoa A, Shemer-Avni Y, Hanuka N, Cosnier S, Lepellec A, Marks RS (2005) Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen. Anal Chem 77:1771–1779CrossRefGoogle Scholar
  108. 108.
    Konry T, Hadad B, Shemer-Avni Y, Cosnier S, Marks RS (2008) ITO pattern fabrication of glass platforms for electropolymerization of light sensitive polymer for its conjugation to bioreceptors on a micro-array. Talanta 75:564CrossRefGoogle Scholar
  109. 109.
    Konry T, Bouhifd M, Cosnier S, Whelan M, Valsesia A, Rossi F, Marks RS (2007) Electrogenerated indium tin oxide-coated glass surface with photosensitive interfaces: Surface analysis. Biosens Bioelectron 22:2230CrossRefGoogle Scholar
  110. 110.
    Pennarun GI, Boxall C, O’Hare D (1996) Micro-optical ring electrode: development of a novel electrode for photoelectrochemistry. Analyst 121:1779–1788CrossRefGoogle Scholar
  111. 111.
    Smith PJS, Haydon PG, Hengstenberg A, Jung S-K (2001) Analysis of cellular boundary layers: application of electrochemical microsensors. Electrochim Acta 47:283–292CrossRefGoogle Scholar
  112. 112.
    Lee Y, Ding Z, Bard AJ (2002) Combined scanning electrochemical/optical microscopy with shear force and current feedback. Anal Chem 74:3634–3643CrossRefGoogle Scholar
  113. 113.
    Maruyama K, Ohkawa H, Ogawa S, Ueda A, Niwa O, Suzuki K (2006) Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy. Anal Chem 78:1904–1912CrossRefGoogle Scholar
  114. 114.
    Takahashi Y, Hirano Y, Yasukawa T, Shiku H, Yamada H, Matsue T (2006) Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy. Langmuir 22:10299–10306CrossRefGoogle Scholar
  115. 115.
    Szunerits S, Walt DR (2002) Fabrication of an optoelectrochemical microring array. Anal Chem 74:1718–1723CrossRefGoogle Scholar
  116. 116.
    Szunerits S, Walt DR (2003) The use of optical fiber bundles combined with electrochemistry for chemical imaging. ChemPhysChem 4:186–192CrossRefGoogle Scholar
  117. 117.
    Szunerits S, Tam JM, Thouin L, Amatore C, Walt DR (2003) Spatially resolved electrochemiluminescence on an array of electrode tips. Anal Chem 75:4382–4388CrossRefGoogle Scholar
  118. 118.
    Maus RG, Wightman RM (2001) Microscopic imaging with electrogenerated chemiluminescence. Anal Chem 73:3993–3998CrossRefGoogle Scholar
  119. 119.
    Zu Y, Ding Z, Zhou J, Lee Y, Bard AJ (2001) Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip. Anal Chem 73:2153–2156CrossRefGoogle Scholar
  120. 120.
    Chovin A, Garrigue P, Vinatier P, Sojic N (2004) Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging. Anal Chem 76:357–364CrossRefGoogle Scholar
  121. 121.
    Chovin A, Garrigue P, Sojic N (2004) Electrochemiluminescent detection of hydrogen peroxide with an imaging sensor array. Electrochim Acta 49:3751–3757CrossRefGoogle Scholar
  122. 122.
    Deiss F, LaFratta CN, Symer M, Blicharz TM, Sojic N, Walt DR (2009) Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc 131:6088–6089CrossRefGoogle Scholar
  123. 123.
    Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: Recommended definitions and classification. Pure Appl Chem 71:2333–2348CrossRefGoogle Scholar
  124. 124.
    Marazuela MD, Moreno-Bondi MC (2002) Fiber-optic biosensors - an overview. Anal Bioanal Chem 372:664–682CrossRefGoogle Scholar
  125. 125.
    Potyrailo RA, Hobbs SE, Hieftje GM (1998) Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development. Fresenius’ J Anal Chem 362:349–373CrossRefGoogle Scholar
  126. 126.
    Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal Chem 78:3859–3874CrossRefGoogle Scholar
  127. 127.
    Ferguson JA, Christian Boles T, Adams CP, Walt DR (1996) A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat Biotechnol 14:1681–1684CrossRefGoogle Scholar
  128. 128.
    Steemers FJ, Walt DR (1999) Multi-analyte sensing: From site-selective deposition to randomly-ordered addressable optical fiber sensors. Mikrochim Acta 131:99–105Google Scholar
  129. 129.
    Meek CC, Pantano P (2001) Spatial confinement of avidin domains in microwell arrays. Lab Chip 1:158–163CrossRefGoogle Scholar
  130. 130.
    Pantano P, Meek CC, Wang J, Coutinho DH, Balkus KJ (2003) Optical encoding with shaped DAM-1 molecular sieve particles. Lab Chip 3:132–135CrossRefGoogle Scholar
  131. 131.
    Ferguson JA, Steemers FJ, Walt DR (2000) High-density fiber-optic DNA random microsphere array. Anal Chem 72:5618–5624CrossRefGoogle Scholar
  132. 132.
    Bowden M, Song LN, Walt DR (2005) Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection. Anal Chem 77:5583–5588CrossRefGoogle Scholar
  133. 133.
    Shepard JRE, Danin-Poleg Y, Kashi Y, Walt DR (2005) Array-based binary analysis for bacterial typing. Anal Chem 77:319–326CrossRefGoogle Scholar
  134. 134.
    Song LN, Ahn S, Walt DR (2006) Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection. Anal Chem 78:1023–1033CrossRefGoogle Scholar
  135. 135.
    Steemers FJ, Ferguson JA, Walt DR (2000) Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat Biotechnol 18:91–94CrossRefGoogle Scholar
  136. 136.
    Ahn S, Walt DR (2005) Detection of Salmonella spp. using microsphere-based, fiber-optic DNA microarrays. Anal Chem 77:5041–5047CrossRefGoogle Scholar
  137. 137.
    Ahn S, Kulis DM, Erdner DL, Anderson DM, Walt DR (2006) Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species. Appl Environ Microbiol 72:5742–5749CrossRefGoogle Scholar
  138. 138.
    Epstein JR, Ferguson JA, Lee KH, Walt DR (2003) Combinatorial decoding: An approach for universal DNA array fabrication. J Am Chem Soc 125:13753–13759CrossRefGoogle Scholar
  139. 139.
    Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, Zhao CF, Che DP, Dickinson T, Wickham E, Bierle J, Doucet D, Milewski M, Yang R, Siegmund C, Haas J, Zhou LX, Oliphant A, Fan JB, Barnard S, Chee MS (2004) Decoding randomly ordered DNA arrays. Gen Res 14:870–877CrossRefGoogle Scholar
  140. 140.
    Kuhn K, Baker SC, Chudin E, Lieu MH, Oeser S, Bennett H, Rigault P, Barker D, McDaniel TK, Chee MS (2004) A novel, high-performance random array platform for quantitative gene expression profiling. Gen Res 14:2347–2356CrossRefGoogle Scholar
  141. 141.
    Fan JB, Yeakley JM, Bibikova M, Chudin E, Wickham E, Chen J, Doucet D, Rigault P, Zhang BH, Shen R, McBride C, Li HR, Fu XD, Oliphant A, Barker DL, Chee MS (2004) A versatile assay for high-throughput gene expression profiling on universal array matrices. Gen Res 14:878–885CrossRefGoogle Scholar
  142. 142.
    Eberle MA, Ng PC, Kuhn K, Zhou L, Peiffer DA, Galver L, Viaud-Martinez KA, Lawley CT, Gunderson KL, Shen R, Murray SS (2007) Power to detect risk Alleles using genome-wide tag SNP panels. PLoS Genet 3:1827–1837CrossRefGoogle Scholar
  143. 143.
    Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2:41–49CrossRefGoogle Scholar
  144. 144.
    Tam JM, Song L, Walt DR (2009) DNA detection on ultrahigh-density optical fiber-based nanoarrays. Biosens Bioelectron 24:2488–2493CrossRefGoogle Scholar
  145. 145.
    Szurdoki F, Michael KL, Walt DR (2001) A duplexed microsphere-based fluorescent immunoassay. Anal Biochem 291:219–228CrossRefGoogle Scholar
  146. 146.
    Lee M, Walt DR (2000) A fiber-optic microarray biosensor using aptamers as receptors. Anal Biochem 282:142–146CrossRefGoogle Scholar
  147. 147.
    Adams EW, Ueberfeld J, Ratner DM, O’Keefe BR, Walt DR, Seeberger PH (2003) Encoded fiber-optic microsphere arrays for probing protein-carbohydrate interactions. Angew Chem Int Ed 42:5317–5320CrossRefGoogle Scholar
  148. 148.
    Rissin DM, Walt DR (2006) Duplexed sandwich immunoassays on a fiber-optic microarray. Anal Chim Acta 564:34–39CrossRefGoogle Scholar
  149. 149.
    Rissin DM, Walt DR (2006) Digital readout of target binding with attomole detection limits via enzyme amplification in femtoliter arrays. J Am Chem Soc 128:6286–6287CrossRefGoogle Scholar
  150. 150.
    Rissin DM, Walt DR (2006) Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics. Nano Lett 6:520–523CrossRefGoogle Scholar
  151. 151.
    Kuang Y, Biran I, Walt DR (2004) Living bacterial cell array for genotoxin monitoring. Anal Chem 76:2902CrossRefGoogle Scholar
  152. 152.
    Dunn RC (1999) Near-field scanning optical microscopy. Chem Rev 99:2891–2927CrossRefGoogle Scholar
  153. 153.
    Sánchez EJ, Novotny L, Xie XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82:4014–4017CrossRefGoogle Scholar
  154. 154.
    Zenhausern F, O’Boyle MP, Wickramasinghe HK (1994) Apertureless near-field optical microscope. Appl Phys Lett 65:1623–1625CrossRefGoogle Scholar
  155. 155.
    Adelmann C, Hetzler J, Scheiber G, Schimmel T, Wegener M, Weber HB (1999) and H.v. Löhneysen, Experiments on the depolarization near-field scanning optical microscope. Appl Phys Lett 74:179CrossRefGoogle Scholar
  156. 156.
    Atia WA, Pilevear S, Güngör A, Davis CC (1998) On the spatial resolution of uncoated optical-fiber probes in internal reflection near-field scanning optical microscopy. Ultramicroscopy 71:379–382CrossRefGoogle Scholar
  157. 157.
    Bozhevolnyi S, Vohnsen B (1997) Near-field optics with uncoated fiber tips: light confinement and spatial resolution. J Opt Soc Am B 14:1656CrossRefGoogle Scholar
  158. 158.
    Müller R, Lienau C (2000) Propagation of femtosecond optical pulses through uncoated and metal-coated near-field fiber probes. Appl Phys Lett 76:3367CrossRefGoogle Scholar
  159. 159.
    Ohstu M, Photon STM (1995) from imaging to fabrication. Optoelectronics 10:147–166Google Scholar
  160. 160.
    Dam TH, Pantano P (1999) Nanotip array photoimprint lithography. Rev Sci Instrum 70:3982–3986CrossRefGoogle Scholar
  161. 161.
    Chovin A, Garrigue P, Manek-Hönninger I, Sojic N (2004) Fabrication, characterization and far-field optical properties of an ordered array of nanoapertures. Nano Lett 4:1965–1968CrossRefGoogle Scholar
  162. 162.
    Chovin A, Garrigue P, Servant L, Sojic N (2004) Electrochemical modulation of remote fluorescence imaging at an ordered opto-electrochemical nanoaperture array. ChemPhysChem 5:1125–1132CrossRefGoogle Scholar
  163. 163.
    Chovin A, Garrigue P, Sojic N (2006) Remote NADH imaging through an ordered array of electrochemiluminescent nanoapertures. Bioelectrochemistry 69:25–33CrossRefGoogle Scholar
  164. 164.
    Craig DB, Arriaga EA, Wong JCY, Lu H, Dovichi NJ (1996) Studies on single alkaline phosphatase molecules: Reaction rate and activation energy of a reaction catalyzed by a single molecule and the effect of thermal denaturation — The death of an enzyme. J Am Chem Soc 118:5245–5253CrossRefGoogle Scholar
  165. 165.
    Foquet M, Korlach J, Zipfel WR, Webb WW, Craighead HG (2004) Focal volume confinement by submicrometer-sized fluidic channels. Anal Chem 76:1618–1626CrossRefGoogle Scholar
  166. 166.
    Min W, English BP, Luo G, Cherayil BJ, Kou SC, Xie XS (2005) Fluctuating enzymes: Lessons from single-molecule studies. Acc Chem Res 38:923–931CrossRefGoogle Scholar
  167. 167.
    Xue Q, Yeung ES (1995) Differences in the chemical reactivity of individual molecules of an enzyme. Nature 373:681–683CrossRefGoogle Scholar
  168. 168.
    Rondelez Y, Tresset G, Tabata KV, Arata H, Fujita H, Takeuchi S, Noji H (2005) Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nature Biotechnol 23:361–365CrossRefGoogle Scholar
  169. 169.
    Gorris HH, Rissin DM, Walt DR (2007) Stochastic inhibitor release and binding from single-enzyme molecules. PNAS 104:17680–17685CrossRefGoogle Scholar
  170. 170.
    Rissin DM, Gorris HH, Walt DR (2008) Distinct and long-lived activity states of single enzyme molecules. J Am Chem Soc 130:5349–5353CrossRefGoogle Scholar
  171. 171.
    Li Z, Hayman RB, Walt DR (2008) Detection of single-molecule DNA hybridization using enzymatic amplification in an array of femtoliter-sized reaction vessels. J Am Chem Soc 130:12622–12623CrossRefGoogle Scholar
  172. 172.
    Gorris HH, Walt DR (2009) Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies. J Am Chem Soc 131:6277–6282CrossRefGoogle Scholar
  173. 173.
    Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nature Meth 4:915–918CrossRefGoogle Scholar
  174. 174.
    Bates M, Huang B, Dempsey GT, Zhuang XW (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753CrossRefGoogle Scholar
  175. 175.
    Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem 1:18–52CrossRefGoogle Scholar
  176. 176.
    Salaita K, Wang YH, Fragala J, Vega RA, Liu C, Mirkin CA (2006) Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew Chem Int Ed 45:7220–7223CrossRefGoogle Scholar
  177. 177.
    Huo FW, Zheng ZJ, Zheng GF, Giam LR, Zhang H, Mirkin CA (2008) Polymer pen lithography. Science 321:1658–1660CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Groupe Nanosystèmes Analytiques, Institut des Sciences MoléculairesUMR 5255 CNRS, Université Bordeaux 1, ENSCBPPessacFrance
  2. 2.Centre for Atom Optics and Ultrafast SpectroscopySwinburne University of TechnologyVictoriaAustralia

Personalised recommendations