Analytical and Bioanalytical Chemistry

, Volume 396, Issue 1, pp 73–83

Single-walled carbon nanotube as an effective quencher

  • Zhi Zhu
  • Ronghua Yang
  • Mingxu You
  • Xiaoling Zhang
  • Yanrong Wu
  • Weihong Tan


Over the past few years, single-walled carbon nanotubes (SWNTs) have been the focus of intense research motivated by their unique physical and chemical properties. This review specifically summarizes recent progress in the development of fluorescence biosensors that integrate the quenching property of SWNTs and the recognition property of functional nucleic acids. SWNTs are substantially different from organic quenchers, showing superior quenching efficiency for a variety of fluorophores, with low background and high signal-to-noise ratio, as well as other advantages derived from the nanomaterial itself. As the second key component of biosensors, functional nucleic acids can bind to either their complementary DNA or a target molecule with the ability to recognize a broad range of targets from metal ions to organic molecules, proteins, and even live cells. By taking advantage of the strengths and properties of both SWNTs and nucleic acid based aptamers, a series of fluorescence biosensors have been designed and fabricated for the detection of a broad range of analytes with high selectivity and sensitivity.


Single-walled carbon nanotubes Quencher Biosensor Molecular beacon Aptamer Singlet oxygen generation 


  1. 1.
    Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222–1244Google Scholar
  2. 2.
    Jun YW, Seo JW, Cheon JW (2008) Acc Chem Res 41:179–189Google Scholar
  3. 3.
    Wang L, Zhao W, Tan W (2008) Nano Res 1:99–115Google Scholar
  4. 4.
    Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Anal Bioanal Chem 391:2469–2495Google Scholar
  5. 5.
    Gill R, Zayats M, Willner I (2008) Angew Chem Int Ed 47:7602–7625Google Scholar
  6. 6.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan Y (2003) Adv Mater 15:353–389Google Scholar
  7. 7.
    Lu W, Lieber CM (2007) Nat Mater 6:841–850Google Scholar
  8. 8.
    Dai H (2002) Acc Chem Res 35:1035–1044Google Scholar
  9. 9.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136Google Scholar
  10. 10.
    Iijima S (1991) Nature 354:56–58Google Scholar
  11. 11.
    Cao Q, Rogers JA (2009) Adv Mater 21:29–53Google Scholar
  12. 12.
    Sgobba V, Guldi DM (2009) Chem Soc Rev 38:165–184Google Scholar
  13. 13.
    Gruner G (2006) Anal Bioanal Chem 384:322–335Google Scholar
  14. 14.
    Allen BL, Kichambare PD, Star A (2007) Adv Mater 19:1439–1451Google Scholar
  15. 15.
    Balasubramanian K, Burghard M (2006) Anal Biochem 385:452–468Google Scholar
  16. 16.
    Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Adv Mater 19:3214–3228Google Scholar
  17. 17.
    Lu FS, Gu LR, Meziani MJ, Wang X, Luo PJ, Veca LM, Cao L, Sun YP (2009) Adv Mater 21:139–152Google Scholar
  18. 18.
    Prato M, Kostarelos K, Bianco A (2008) Acc Chem Res 41:60–68Google Scholar
  19. 19.
    Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Nature 386:474–477Google Scholar
  20. 20.
    Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Science 298:2361–2366Google Scholar
  21. 21.
    Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Proc Natl Acad Sci USA 102:11600–11605Google Scholar
  22. 22.
    Chakravarty P, Marches R, Zimmerman NS, Swafford ADE, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES (2008) Proc Natl Acad Sci USA 105:8697–8702Google Scholar
  23. 23.
    Heller DA, Baik S, Eurell TE, Strano MS (2005) Adv Mater 17:2793–2799Google Scholar
  24. 24.
    Zerda ADL, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS (2008) Nat Nanotechnol 3:557–562Google Scholar
  25. 25.
    Welsher K, Liu Z, Daranciang D, Dai H (2008) Nano Lett 8:586–590Google Scholar
  26. 26.
    Zavaleta C, de la Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, Chen X, Dai H, Gambhir SS (2008) Nano Lett 9:2800–2805Google Scholar
  27. 27.
    Liu Z, Li XL, Tabakman SM, Jiang KL, Fan SS, Dai HJ (2008) J Am Chem Soc 130:13540–13541Google Scholar
  28. 28.
    Martin RB, Qu LW, Lin Y, Harruff BA, Bunker CE, Gord JR, Allard LF, Sun YP (2004) J Phys Chem B 108:11447–11453Google Scholar
  29. 29.
    Lin SJ, Keskar G, Wu YN, Wang X, Mount AS, Klaine SJ, Moore JM, Rao AM, Ke PC (2006) Appl Phys Lett 89:143118Google Scholar
  30. 30.
    Chitta R, Sandanayaka ASD, Schumacher AL, D’Souza L, Araki Y, Ito O, D’Souza F (2007) J Phys Chem C 111:6947–6955Google Scholar
  31. 31.
    Casey JP, Bachilo SM, Weisman RB (2008) J Mater Chem 18:1510–1516Google Scholar
  32. 32.
    Pan BF, Cui DX, Ozkan CS, Ozkan M, Xu P, Huang T, Liu FT, Chen H, Li Q, He R, Gao F (2008) J Phys Chem C 112:939–944Google Scholar
  33. 33.
    Cui DX, Pan BF, Zhang H, Gao F, Wu RN, Wang JP, He R, Asahi T (2008) Anal Chem 80:7996–8001Google Scholar
  34. 34.
    Zheng M, Jagota A, Semke ED, Bruce A, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) Nat Maters 2:338–342Google Scholar
  35. 35.
    Wang S, Humpherys ES, Chung S, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jagota A (2003) Nat Maters 2:196–199Google Scholar
  36. 36.
    Tang XW, Bansaruntip S, Nakayama N, Yenilmez E, Chang YI, Wang Q (2006) Nano Lett 6:1632–1636Google Scholar
  37. 37.
    So HM, Won K, Kim YH, Kim BK, Ryu BH, Na PS, Kim H, Lee JO (2005) J Am Chem Soc 127:11906–11907Google Scholar
  38. 38.
    Shim M, Shi NW, Dai HJ (2005) J Am Chem Soc 127:6021–6026Google Scholar
  39. 39.
    Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A (2003) Chem Biol 10:961–966Google Scholar
  40. 40.
    Storhoff JJ, Mirkin CA (1999) Chem Rev 99:1849–1862Google Scholar
  41. 41.
    Seeman NC (2003) Nature 421:427–431Google Scholar
  42. 42.
    Tuerk C, Gold L (1990) Science 249:505–510Google Scholar
  43. 43.
    Ellington AD, Szostak JW (1990) Nature 346:818–822Google Scholar
  44. 44.
    Osborne SE, Ellington AD (1997) Chem Rev 97:349–370Google Scholar
  45. 45.
    Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW, Mallikaratchy P, Sefah K, Yang CYJ, Tan WH (2006) Proc Natl Acad Sci USA 103:11838–11843Google Scholar
  46. 46.
    Yang CYJ, Jockusch S, Vicens M, Turro NJ, Tan WH (2005) Proc Natl Acad Sci USA 102:17278–17283Google Scholar
  47. 47.
    Willner I, Zayats M (2007) Angew Chem Int Ed 46:6408–6418Google Scholar
  48. 48.
    Liu J, Cao Z, Lu Y (2009) Chem Rev 109:1948–1998Google Scholar
  49. 49.
    McNamara JO, Andrechek ER, Wang Y, Viles D, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH (2006) Nat Biotechnol 24:1005–1015Google Scholar
  50. 50.
    Famulok M, Hartig JS, Mayer G (2007) Chem Rev 107:3715–3743Google Scholar
  51. 51.
    Cho EJ, Yang L, Levy M, Ellington AD (2005) J Am Chem Soc 127:2022–2023Google Scholar
  52. 52.
    Shlyahovsky B, Li D, Weizmann Y, Nowarski R, Kotler M, Willner I (2007) J Am Chem Soc 129:3814–3915Google Scholar
  53. 53.
    Bayer TS, Smolke CD (2005) Nat Biotechnol 23:337–343Google Scholar
  54. 54.
    Qu LW, Martin RB, Huang WJ, Fu K, Zweifel D, Lin Y, Sun Y-P, Bunker CE, Harruff BA, Gord JR, Allard LF (2002) J Chem Phys 117:8089–8094Google Scholar
  55. 55.
    Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) J Am Chem Soc 124:760–761Google Scholar
  56. 56.
    Murakami H, Nomura T, Nakashima N (2003) Chem Phys Lett 378:481–485Google Scholar
  57. 57.
    Fowler PW, Ceulemans A (1995) J Phys Chem 99:508–510Google Scholar
  58. 58.
    Bachilo RB, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Science 298:2361–2366Google Scholar
  59. 59.
    Ahmad A, Kern K, Balasubramanian K (2009) Chem Phys Chem 10:905–909Google Scholar
  60. 60.
    Biju V, Itoh T, Baba Y, Ishikawa M (2006) J Phys Chem B 110:26068–26074Google Scholar
  61. 61.
    Li H, Martin RB, Harruff BA, Carino RA, Allard LF, Sun Y-P (2004) Adv Mater 16:896–900Google Scholar
  62. 62.
    Baskaran D, Mays JW, Zhang XP, Bratcher MS (2005) J Am Chem Soc 127:6916–6917Google Scholar
  63. 63.
    Sandanayaka ASD, Chitta R, Subbaiyan NK, D’Souza L, Ito O, D’souza F (2009) J Phys Chem C 113:13425–13432Google Scholar
  64. 64.
    Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, McLean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Science 302:1545–1548Google Scholar
  65. 65.
    Tu XM, Manohar S, Jagota A, Zheng M (2009) Nature 460:250–253Google Scholar
  66. 66.
    Lustig SR, Jagota A, Khripin C, Zheng M (2005) J Phys Chem B 109:2559–2566Google Scholar
  67. 67.
    Campbell JF, Tessmer I, Thorp HH, Erie DA (2008) J Am Chem Soc 130:10648–10655Google Scholar
  68. 68.
    Manohar S, Tang T, Jagota A (2007) J Phys Chem C 111:17835–17845Google Scholar
  69. 69.
    Johnson RR, Kohlmeyer A, Johnson ATC, Klein ML (2009) Nano Lett 9:537–541Google Scholar
  70. 70.
    Yarotski DA, Kilina SV, Talin AA, Tretiak S, Prezhdo OV, Balatsky AV, Taylor AJ (2009) Nano Lett 9:12–17Google Scholar
  71. 71.
    Gigliotti B, Sakizzie B, Bethune DS, Shelby RM, Cha JN (2006) Nano Lett 6:159–164Google Scholar
  72. 72.
    Zhao XC, Johnson JK (2007) J Am Chem Soc 129:10438–10445Google Scholar
  73. 73.
    Xu Y, Pehrsson PE, Chen LW, Zhang R, Zhao W (2007) J Phys Chem C 111:8638–8643Google Scholar
  74. 74.
    Wang KM, Tang ZW, Yang CYJ, Kim Y, Fang XH, Li W, Wu YR, Medley CD, Cao ZH, Li J, Colon P, Lin H, Tan WH (2009) Angew Chem Int Ed 48:856–870Google Scholar
  75. 75.
    Fang Y, Wu WH, Pepper JL, Larsen JL, Marras SAE, Nelson EA, Epperson WB, Christopher-Hennings J (2002) J Clin Microbiol 40:287–291Google Scholar
  76. 76.
    Poddar SK (2002) Mol Cell Probes 14:25–32Google Scholar
  77. 77.
    Roy S, Kabir M, Mondal D, Ali IK, Petri WAJ, Haque R (2005) J Clin Microbiol 43:2168–2172Google Scholar
  78. 78.
    Feldman SH, Bowman SG (2007) Lab Anim 36:43–50Google Scholar
  79. 79.
    Fang XH, Liu XJ, Schuster S, Tan WH (1999) J Am Chem Soc 121:292–2922Google Scholar
  80. 80.
    Li J, Tan W, Wang K, Xiao D, Yang X, He X, Tang Z (2001) Anal Sci 17:1149Google Scholar
  81. 81.
    Yao G, Tan WH (2004) Anal Biochem 331:216–223Google Scholar
  82. 82.
    Wang H, Li J, Liu H, Liu Q, Mei Q, Wang Y, Zhu J, He N, Lu Z (2002) Nucleic Acids Res 30:e61Google Scholar
  83. 83.
    Fang XH, Mi YM, Li JWJ, Beck T, Schuster S, Tan WH (2002) Cell Biochem Biophys 37:71–81Google Scholar
  84. 84.
    Bratu DP, Cha BJ, Mhlanga MM, Kramer FR, Tyagi S (2003) Proc Natl Acad Sci USA 100:13308–13313Google Scholar
  85. 85.
    Mhlanga MM, Vargas DY, Fung CW, Kramer FR, Tyagi S (2005) Nucleic Acids Res 33:1902–1912Google Scholar
  86. 86.
    Santangelo P, Nitin N, Laconte L, Woolums A, Bao G (2006) J Virol 80:682–688Google Scholar
  87. 87.
    Yang RH, Jin JY, Chen Y, Shao N, Kang HZ, Xiao ZY, Tang ZW, Wu YR, Zhu Z, Tan WH (2008) J Am Chem Soc 130:8351–8358Google Scholar
  88. 88.
    Yang RH, Tang ZW, Yan JL, Kang HZ, Kim Y, Zhu Z, Tan WH (2008) Anal Chem 80:7408–7413Google Scholar
  89. 89.
    Lerman LS (1961) J Mol Biol 3:18CrossRefGoogle Scholar
  90. 90.
    Guo Q, Lu M, Marky LA, Kallenbach NR (1992) Biochemistry 31:2451–2455Google Scholar
  91. 91.
    Lee K, Maisel K, Rouillard J, Gulari E, Kim J (2008) Chem Mater 20:2848–2850Google Scholar
  92. 92.
    Cox MM, Nelson DL (2000) Lehninger principles of biochemistry, 3rd edn. Worth, New YorkGoogle Scholar
  93. 93.
    Liu Y, Wang YX, Jin JY, Wang H, Yang RH, Tan WH (2009) Chem Commun 665–667Google Scholar
  94. 94.
    Lebedkin S, Kareev I, Hennrich F, Kappes MM (2008) J Phys Chem C 112:16236–16239Google Scholar
  95. 95.
    Dolmans DEJG, Fukumura D, Jain RK (2003) Nat Rev Cancer 3:380–387Google Scholar
  96. 96.
    Castano AP, Mroz P, Hamblin MR (2006) Nat Rev Cancer 6:535–545Google Scholar
  97. 97.
    Zhu Z, Tang ZW, Phillips JA, Yang RH, Wang H, Tan WH (2008) J Am Chem Soc 130:10856–10857Google Scholar
  98. 98.
    Cho ES, Hong SW, Jo WH (2008) Macromol Rapid Commun 29:1798–1803Google Scholar
  99. 99.
    Liu Z, Winters M, Holodniy M, Dai HJ (2007) Angew Chem Int Ed 46:2023–2027Google Scholar
  100. 100.
    Kam NWS, Liu Z, Dai H (2005) J Am Chem Soc 127:12492–12493Google Scholar
  101. 101.
    Wu YR, Phillips JA, Liu HP, Yang RH, Tan WH (2008) ACS Nano 2:2023–2028Google Scholar
  102. 102.
    Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ (2003) Toxicol Environ Health A 66:1909–1926Google Scholar
  103. 103.
    Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L (2006) Nano Lett 6:1121–1125Google Scholar
  104. 104.
    Liu Z, Davis C, Cai WB, He L, Chen XY, Dai HJ (2008) Proc Natl Acad Sci USA 105:1410–1415Google Scholar
  105. 105.
    Schipper ML, Nakayama-Ratchford N, Davis CR, Kam WSN, Chu P, Liu Z, Sun XM, Dai HJ, Gambhir SS (2008) Nat Nanotechol 3:216–221Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Zhi Zhu
    • 1
  • Ronghua Yang
    • 2
  • Mingxu You
    • 1
  • Xiaoling Zhang
    • 1
    • 3
  • Yanrong Wu
    • 1
  • Weihong Tan
    • 1
    • 2
  1. 1.Center for Research at Bio/nano Interface, Department of Chemistry, Shands Cancer Center, UF Genetics Institute and McKnight Brain InstituteUniversity of FloridaGainesvilleUSA
  2. 2.Biomedical Engineering CenterHunan UniversityChangshaChina
  3. 3.Department of ChemistrySchool of Science, Beijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations