Characterization, stoichiometry, and stability of salivary protein–tannin complexes by ESI-MS and ESI-MS/MS

  • Francis Canon
  • Franck Paté
  • Emmanuelle Meudec
  • Thérèse Marlin
  • Véronique Cheynier
  • Alexandre Giuliani
  • Pascale Sarni-ManchadoEmail author
Original Paper


Numerous protein–polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein–ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP–tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP–tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5·EgCG complexes are maintained intact in the gas phase.


Schematic illustrating the interaction between IB5 and EgCG, leading to IB5·EgCG complexes that remain intact in the gas phase during ESI-MS analysis. This system provides a model of biological interest with regards to astringency


Polyphenol Interaction Proline-rich protein Saliva Astringency IUP 



collision-induced dissociation


epigallocatechin gallate


electrospray ionization


intrinsically unstructured protein


mass spectrometry


tandem mass spectrometry


proline-rich protein





The authors thank Hélène Boze and Claire Bouchut (UMR 1083 SPO) for their help in protein production and purification and MS experiments. We acknowledge synchrotron SOLEIL and thank all staff for assistance in using beamline DISCO. AG thanks Applied Biosystems (Les Ullis, France) for the loan of the IonCooler Guide. This work is supported by grant 07-BLAN-0279 from the French Agence Nationale de la Recherche (A.N.R.).


  1. 1.
    Tompa P (2002) Trends Biochem Sci 27:527–533CrossRefGoogle Scholar
  2. 2.
    Dyson HJ, Wright PE (2005) Nat Rev Mol Cell Biol 6:197–208CrossRefGoogle Scholar
  3. 3.
    Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Biochemistry 41:6573–6582CrossRefGoogle Scholar
  4. 4.
    Bennick A (1982) Mol Cell Biochem 45:83–99CrossRefGoogle Scholar
  5. 5.
    Robbins CT, Hagerman AE, Austin PJ, Arthur CM, Hanley TA (1991) J Mammal 72:480–486CrossRefGoogle Scholar
  6. 6.
    Haslam E, Lilley TH, Cai Y, Martin R, Magnolato D (1989) Planta Med 55:vGoogle Scholar
  7. 7.
    McMurrough I, Madigan D, Kelly RJ, Smyth MR (1996) J Am Soc Brew Chem 54:141–148Google Scholar
  8. 8.
    McMurrough I, Hennigan GP, Loughrey MJ (1983) J Inst Brew 89:15–23Google Scholar
  9. 9.
    Waters EJ, Peng Z, Pocock KF, Williams PJ (1995) Aust J Grape Wine Res I:86–93CrossRefGoogle Scholar
  10. 10.
    Butler LG (1992) In: Hemingway RW, Laks PE (eds) Antinutritional effects of condensed and hydrolyzable tannins. Plenum, New YorkGoogle Scholar
  11. 11.
    Dangles O (2006) Agro Food Ind Hi-Tech 17:64–67Google Scholar
  12. 12.
    van Valen L (1973) Evol Theory 1:1–30Google Scholar
  13. 13.
    Breslin PA, Gilmore M, Beauchamp GK, Green BG (1993) Chem Senses 18:405–417CrossRefGoogle Scholar
  14. 14.
    Green BG (1993) Acta Psychol 84:119–125CrossRefGoogle Scholar
  15. 15.
    Clifford MN (1997) In: Tomas-Barberan F, Robins R (eds) Astringency. Clarendon, OxfordGoogle Scholar
  16. 16.
    Noble A (1998) In: Waterhouse AL, Eberler S (eds) Why do wines taste bitter and feel astringent ? American Chemical Society, WashingtonGoogle Scholar
  17. 17.
    Hagerman AE (1989) In: Hemingway RW, Karchesy JJ (eds) Chemistry of tannin-protein complexation. Plenum, New York, LondonGoogle Scholar
  18. 18.
    Bate-Smith EC (1954) Food 23:124–135Google Scholar
  19. 19.
    Haslam E (1996) J Nat Prod 59:205–215CrossRefGoogle Scholar
  20. 20.
    Simon C, Barathieu K, Laguerre M, Schmitter JM, Fouquet E, Pianet I, Dufourc EJ (2003) Biochemistry 42:10385–10395CrossRefGoogle Scholar
  21. 21.
    Pascal C, Poncet-Legrand C, Imberty A, Gautier C, Sarni-Manchado P, Cheynier V, Vernhet A (2007) J Agric Food Chem 55:4895–4901CrossRefGoogle Scholar
  22. 22.
    Sarni-Manchado P, Canals-Bosch J, Mazerolles G, Cheynier V (2008) J Agric Food Chem 56:9563–9569CrossRefGoogle Scholar
  23. 23.
    Porter LJ, Woodruffe J (1984) Phytochemistry 23:1255–1256CrossRefGoogle Scholar
  24. 24.
    Okuda T, Mori K, Hatano T (1985) Chem Pharm Bull 33:1424–1433Google Scholar
  25. 25.
    Baxter NJ, Lilley TH, Haslam E, Williamson MP (1997) Biochemistry 36:5566–5577CrossRefGoogle Scholar
  26. 26.
    Hatano T, Hemingway RW (1996) J Chem Soc Chem Comm:2537–2538Google Scholar
  27. 27.
    Luck G, Liao H, Murray NJ, Grimmer HR, Warminski EE, Williamson MP, Lilley TH, Haslam E (1994) Phytochemistry 37:357–371CrossRefGoogle Scholar
  28. 28.
    Murray NJ, Williamson MP, Lilley TH, Haslam E (1994) Eur J Biochem 219:923–935CrossRefGoogle Scholar
  29. 29.
    Vergé S, Richard T, Moreau S, Nurich A, Merillon J-M, Vercauteren J, Monti J-P (2002) Biochim Biophys Acta 1571:89–101Google Scholar
  30. 30.
    Sarni-Manchado P, Cheynier V (2002) J Mass Spectrom 37:609–616CrossRefGoogle Scholar
  31. 31.
    Vergé S, Richard T, Moreau S, Richelme-David S, Vercauteren J, Promé J-C, Monti J-P (2002) Tetrahedron Lett 43:2363–2366CrossRefGoogle Scholar
  32. 32.
    Chen Y, Hagerman AE (2004) J Agric Food Chem 52:4008–4011CrossRefGoogle Scholar
  33. 33.
    Loo JA, Sannes-Lowery KA (1997) Mass Spectrom Rev 16:1–23CrossRefGoogle Scholar
  34. 34.
    Pramanik BN, Bartner PL, Mirza UA, Liu YH, Ganguly AK (1998) J Mass Spectrom 33:911–920CrossRefGoogle Scholar
  35. 35.
    Jorgensen TJD, Roepstorff P, Heck AJR (1998) Anal Chem 70:4427–4432CrossRefGoogle Scholar
  36. 36.
    Kapur A, Beck JL, Brown SE, Dixon NE, Sheil MM (2002) Protein Sci 11:147–157CrossRefGoogle Scholar
  37. 37.
    Bligh SWA, Haley T, Lowe PN (2003) J Mol Recognit 16:139–148CrossRefGoogle Scholar
  38. 38.
    Gupta R, Kapur A, Beck JL, Sheil MM (2001) Rapid Commun Mass Spectrom 15:2472–2480CrossRefGoogle Scholar
  39. 39.
    de Brouwer APM, Versluis C, Westerman J, Roelofsen B, Heck AJR, Wirtz KWA (2002) Biochemistry 41:8013–8018CrossRefGoogle Scholar
  40. 40.
    Benesch JLP, Sobott F, Robinson CV (2003) Anal Chem 75:2208–2214CrossRefGoogle Scholar
  41. 41.
    Rosu F, De Pauw E, Gabelica V (2008) Biochimie 90:1074–1087CrossRefGoogle Scholar
  42. 42.
    Pascal C, Bigey F, Ratomahenina R, Boze H, Moulin G, Sarni-Manchado P (2006) Protein Expr Purif 47:524–532CrossRefGoogle Scholar
  43. 43.
    Yin S, Xie Y, Loo JA (2008) J Am Soc Mass Spectrom 19:1199–1208CrossRefGoogle Scholar
  44. 44.
    Haller I, Mirza UA, Chait BT (1996) J Am Soc Mass Spectrom 7:677–681CrossRefGoogle Scholar
  45. 45.
    Robinson CV (2001) J Am Soc Mass Spectrom 12:126–126CrossRefGoogle Scholar
  46. 46.
    Zhang J, Kashket S (1998) Caries Res 32:233–238CrossRefGoogle Scholar
  47. 47.
    Jørgensen TJD, Delforge D, Remacle J, Bojesen G, Roepstorff P (1999) Int J Mass Spectrom Ion Process 188:63–85Google Scholar
  48. 48.
    Wan KX, Gross ML, Shibue T (2000) J Am Soc Mass Spectrom 11:450–457CrossRefGoogle Scholar
  49. 49.
    Akashi S, Osawa R, Nishimura Y (2005) J Am Soc Mass Spectrom 16:116–125CrossRefGoogle Scholar
  50. 50.
    Harrison AG (1997) Mass Spectrom Rev 16:201–217CrossRefGoogle Scholar
  51. 51.
    Bleiholder C, Suhai S, Paizs B (2006) J Am Soc Mass Spectrom 17:1275–1281CrossRefGoogle Scholar
  52. 52.
    Yi SL, Boys BL, Brickenden A, Konermann L, Choy WY (2007) Biochemistry 46:13120–13130CrossRefGoogle Scholar
  53. 53.
    Engel BJ, Pan P, Reid GE, Wells JM, McLuckey SA (2002) Int J Mass Spectrom Ion Process 219:171–187Google Scholar
  54. 54.
    Breci LA, Tabb DL III, JRY WVH (2003) Anal Chem 75:1963–1971CrossRefGoogle Scholar
  55. 55.
    Vaisar T, Urban J (1996) J Mass Spectrom 31:1185–1187CrossRefGoogle Scholar
  56. 56.
    Zhang X, Jai-nhuknan J, Cassady CJ (1997) Int J Mass Spectrom Ion Process 171:135–145CrossRefGoogle Scholar
  57. 57.
    Leymarie N, Berg EA, McComb ME, O'Connor PB, Grogan J, Oppenheim FG, Costello CE (2002) Anal Chem 74:4124–4132CrossRefGoogle Scholar
  58. 58.
    Flanzy C (1998) Oenologie — Fondements scientifiques et technologiques. Lavoisier, ParisGoogle Scholar
  59. 59.
    Sharon M, Robinson CV (2007) Annu Rev Biochem 76:167–193CrossRefGoogle Scholar
  60. 60.
    Hagerman AE, Rice ME, Richard NT (1998) J Agric Food Chem 46:2590–2595CrossRefGoogle Scholar
  61. 61.
    Poncet-Legrand C, Gautier C, Cheynier V, Imberty A (2007) J Agric Food Chem 55:9235–9240CrossRefGoogle Scholar
  62. 62.
    Robinson CV, Chung EW, Kragelund BB, Knudsen J, Aplin RT, Poulsen FM, Dobson CM (1996) J Am Chem Soc 118:8646–8653CrossRefGoogle Scholar
  63. 63.
    Sobott FM, Hernández H, McCammon MG, Robinson CV (2005) Phil Trans R Soc A 363:379–391Google Scholar
  64. 64.
    Mehansho H, Hagerman A, Clements S, Butler LG, Rogler JC, Carlson DM (1983) Proc Natl Acad Sci USA 80:3948–3952CrossRefGoogle Scholar
  65. 65.
    Carlson DM (1993) Crit Rev Oral Biol Med 4:495–502Google Scholar
  66. 66.
    Sarni-Manchado P, Cheynier V, Moutounet M (1999) J Agric Food Chem 47:42–47CrossRefGoogle Scholar
  67. 67.
    Tompa P (2003) J Mol Struc (Theochem) 361–371Google Scholar
  68. 68.
    Khalsa-Moyers G, McDonald WH (2006) Brief Funct Genomic Proteomic 5:98–111CrossRefGoogle Scholar
  69. 69.
    Ruotolo BT, Robinson CV (2006) Curr Opin Chem Biol 10:402–408CrossRefGoogle Scholar
  70. 70.
    Ham BM, Cole RB (2005) Anal Chem 77:4148–4159CrossRefGoogle Scholar
  71. 71.
    Chen Y-LC, JM, Collings BA, Konermann L, Douglas DJ (1998) Rapid Commun Mass Spectrom 12:1003–1010Google Scholar
  72. 72.
    Chen Y-L, Collings BA, Douglas DJ (1997) J Am Soc Mass Spectrom 8:681–687CrossRefGoogle Scholar
  73. 73.
    Wells JM, McLuckey SA (2005) In: Collision induced dissociation (CID) of peptides and proteins. Academic, New YorkGoogle Scholar
  74. 74.
    Charlton AJ, Baxter NJ, Lilley TH, Haslam E, McDonald CJ, Williamson MP (1996) FEBS Lett 382:289–292CrossRefGoogle Scholar
  75. 75.
    Lu Y, Bennick A (1998) Arch Oral Biol 43:717–728CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Francis Canon
    • 1
  • Franck Paté
    • 1
  • Emmanuelle Meudec
    • 1
  • Thérèse Marlin
    • 1
  • Véronique Cheynier
    • 1
  • Alexandre Giuliani
    • 2
    • 3
  • Pascale Sarni-Manchado
    • 1
    Email author
  1. 1.UMR 1083 Sciences Pour l’Oenologie, Polyphenol Interaction Research GroupINRAMontpellierFrance
  2. 2.DISCO beamlineSynchrotron Soleil, l’Orme des MerisiersGif sur YvetteFrance
  3. 3.CEPIAINRANantesFrance

Personalised recommendations