Matrix solid-phase dispersion and solid-phase microextraction applied to study the distribution of fenbutatin oxide in grapes and white wine

  • R. Montes
  • P. Canosa
  • J. Pablo Lamas
  • A. Piñeiro
  • I. Orriols
  • R. Cela
  • I. RodríguezEmail author
Original Paper


The fate of the acaricide fenbutatin oxide (FBTO) during the elaboration of white wine is evaluated. Matrix solid-phase dispersion (MSPD) and solid-phase microextraction (SPME) were used as sample preparation techniques applied to the semi-solid and the liquid matrices involved in this research, respectively. Selective determination of FBTO was achieved by gas chromatography with atomic emission detection (GC–AED). GC coupled to mass spectrometry was also used to establish the identity of FBTO by-products detected in must and wine samples. MSPD extractions were accomplished using C18 as dispersant and co-sorbent. Sugars and other polar interferences were first removed with water and water/acetone mixtures, then FBTO was recovered with 8 mL of acetone. When used in combination with GC–AED, the MSPD method provided limits of quantification (LOQs) in the low nanogram per gram range, recoveries around 90% and relative standard deviations below 13% for extractions performed in different days. Performance of SPME for must and wine was mainly controlled by the extraction temperature, time and fibre coating. Under final conditions, FBTO was extracted in the headspace mode for 45 min at 100 °C, using a 100 μm poly(dimethylsiloxane)-coated fibre. The achieved LOQs remained around or below 0.1 ng mL−1, depending on the type of sample, and the inter-day precision ranged from 10% to 13%. FBTO residues in grapes stayed mostly on the skin of the fruit. Although FBTO was not removed during must and white wine elaboration, it remained associated with suspended particles existing in must and lees, settled after must fermentation, with a negligible risk of being transferred to commercialised wine. On the other hand, two by-products of FBTO (bis and mono (2-methyl-2-phenylpropyl) tin) were identified, for first time, in must and final white wines obtained from FBTO treated grapes. Found values for the first species ranged from 0.03 to 0.9 ng mL−1.


Fenbutatin oxide Grapes Wine By-products Sample preparation Organotin species 



This study has been supported by the Xunta de Galicia (project PGIDIT06RAG50501PR-2).


  1. 1.
    Rodríguez-González P, Ruiz Encinar P, García Alonso JI, Sanz-Medel A (2006) Water. Air, Soil Pollut 174:127–139CrossRefGoogle Scholar
  2. 2.
    Radke B, Leczynski L, Wasik A, Namiesnik J, Bolalek J (2008) Chemosphere 73:407–414CrossRefGoogle Scholar
  3. 3.
    Berto D, Giana M, Boscolo R, Covelli S, Giovanardi O, Massironi M, Grassia L (2007) Mar Pollut Bull 55:425–435CrossRefGoogle Scholar
  4. 4.
    Diez S, Bayona JM (2009) J Environ Manage 90:S25–S30CrossRefGoogle Scholar
  5. 5.
    Quintela M, Barreiro R, Ruiz JM (2000) Sci Total Environ 247:227–237CrossRefGoogle Scholar
  6. 6.
    Ruiz JM, Bachelet G, Caumette P, Donard OFX (1996) Environ Pollut 93:195–203CrossRefGoogle Scholar
  7. 7.
    Gipperth L (2009) J Environ Manage 90:S86–S95CrossRefGoogle Scholar
  8. 8.
    Teodoro AD, Fadini MAM, Lemos WP, Guedes RNC, Pallini A (2005) Exp Appl Acarol 36:61–70CrossRefGoogle Scholar
  9. 9.
    Kim SS, Yoo SS (2002) Biocontrol 47:563–573CrossRefGoogle Scholar
  10. 10.
    Commission Directive 53/2006/EC of 7 June 2006, Off. J. Eur. Commun., 8.6.2006, L 154/11Google Scholar
  11. 11.
    Leung KMY, Kwong RPY, Ng WC, Horiguchi T, Qiu JW, Yang M, Song M, Jiang G, Zheng GJ, Lam PKS (2006) Chemosphere 65:922–938CrossRefGoogle Scholar
  12. 12.
    Stäb JA, Cofino WP, van Hattum B, Brinkman UAT (1993) Fresenius’ J Anal Chem 347:247–255CrossRefGoogle Scholar
  13. 13.
    Stäb JA, Cofino WP, van Hattum B, Brinkman UAT (1994) Anal Chim Acta 286:335–341CrossRefGoogle Scholar
  14. 14.
    Devos C, Moens L, Sandra P (2005) J Sep Sci 28:665–668CrossRefGoogle Scholar
  15. 15.
    Michel P, Averty B (1991) Appl Organomet Chem 5:393–397CrossRefGoogle Scholar
  16. 16.
    Barnes KA, Fussell RJ, Startin JR, Mobbs HJ, James R, Reynolds SL (1997) Rapid Commun Mass Spectrom 11:159–164CrossRefGoogle Scholar
  17. 17.
    Cabras P, Melis M, Tuberoso C, Falqui D, Pala M (1992) J Agric Food Chem 40:901–903CrossRefGoogle Scholar
  18. 18.
    Gray A, Dutton AJ, Eadsforth CV (1995) Pestic Sci 43:295–302CrossRefGoogle Scholar
  19. 19.
    Canosa P, Montes R, Lamas JP, Garcia-Lopez M, Orriols I, Rodriguez I (2009) Talanta 79:598–602CrossRefGoogle Scholar
  20. 20.
    Garcia-Lopez M, Canosa P, Rodriguez I (2008) Anal Bioanal Chem 391:963–974CrossRefGoogle Scholar
  21. 21.
    Kristenson EM, Brinkman UAT, Ramos L (2006) Trends Anal Chem 25:96–111CrossRefGoogle Scholar
  22. 22.
    Heroult J, Bueno M, Potin-Gautier M, Lespes G (2008) J Chromatogr A 1180:122–130CrossRefGoogle Scholar
  23. 23.
    Zachariadis GA, Rosenberg E (2009) Talanta 78:570–576CrossRefGoogle Scholar
  24. 24.
    Azenha M, Vasconcelos MT (2002) Anal Chim Acta 458:231–239CrossRefGoogle Scholar
  25. 25.
    Pawliszyn J (1997) Solid phase microextraction. Theory and practice. Wiley-VCH, New YorkGoogle Scholar
  26. 26.
    Cabras P, Conte E (2001) Food Addit Contam 18:880–885Google Scholar
  27. 27.
    Teixeira MJ, Aguiar A, Afonso CMM, Alves A, Bastos MMSM (2004) Anal Chim Acta 513:333–340CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • R. Montes
    • 1
  • P. Canosa
    • 1
  • J. Pablo Lamas
    • 1
  • A. Piñeiro
    • 1
  • I. Orriols
    • 2
  • R. Cela
    • 1
  • I. Rodríguez
    • 1
    Email author
  1. 1.Departamento de Química Analítica, Nutrición y Bromatología, Instituto de Investigación y Análisis AlimentarioUniversidad de Santiago de CompostelaSantiagoSpain
  2. 2.EVEGAEstación de Viticultura e Enoloxía de GaliciaOurenseSpain

Personalised recommendations