Advertisement

Analytical and Bioanalytical Chemistry

, Volume 395, Issue 7, pp 2371–2376 | Cite as

Solid-contact pH-selective electrode using multi-walled carbon nanotubes

  • Gastón A. Crespo
  • Derese Gugsa
  • Santiago Macho
  • F. Xavier Rius
Original Paper

Abstract

Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-µm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

Keywords

Potentiometric ion-selective electrodes Solid-state sensors pH Multi-walled carbon nanotubes 

Notes

Acknowledgements

This work was supported by the Spanish MICINN, through the project grants NAN2004-09306-C05-05 and CTQ2006-7-67570/BQU. G.A.C. also acknowledges MICINN for the doctoral fellowship AP2006-04171 and D.G acknowledges the economic support provided by the Universitat Rovira i Virgili.

References

  1. 1.
    Bakker E, Pretsch E (2007) Modern potentiometry. Angew Chem Int Edit 46(30):5660–5668CrossRefGoogle Scholar
  2. 2.
    Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108(2):329–351CrossRefGoogle Scholar
  3. 3.
    Chumbimuni-Torres KY, Rubinova N, Radu A, Kubota LT, Bakker E (2006) Solid contact potentiometric sensors for trace level measurements. Anal Chem 78(4):1318–1322CrossRefGoogle Scholar
  4. 4.
    Michalska A, Hulanicki A, Lewenstam A (1994) All-solid-state hydrogen ion-selective electrode based on a conducting poly(pyrrole) solid contact. Analyst 119(11):2417–2420CrossRefGoogle Scholar
  5. 5.
    Lindner E, Gyurcsanyi RE (2009) Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J Solid State Electrochem 13(1):51–68CrossRefGoogle Scholar
  6. 6.
    Lai CZ, Joyer MM, Fierke MA, Petkovich ND, Stein A, Buhlmann P (2009) Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3DOM) carbon solid contacts. J Solid State Electrochem 13(1):123–128CrossRefGoogle Scholar
  7. 7.
    Fouskaki M, Chaniotakis N (2008) Fullerene-based electrochemical buffer layer for ion-selective electrodes. Analyst 133(8):1072–1075CrossRefGoogle Scholar
  8. 8.
    Crespo GA, Macho S, Rius FX (2008) Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem 80(4):1316–1322CrossRefGoogle Scholar
  9. 9.
    Crespo GA, Macho S, Bobacka J, Rius FX (2009) Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. Anal Chem 81(2):676–681CrossRefGoogle Scholar
  10. 10.
    Lai CZ, Fierke MA, Stein A, Buhlmann P (2007) Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Anal Chem 79(12):4621–4626CrossRefGoogle Scholar
  11. 11.
    Dai HJ (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500(1–3):218–241CrossRefGoogle Scholar
  12. 12.
    Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto J-M (2007) Introduction to carbon nanotubes. In Springer Handbook of Nanotechnology, pp 43-112Google Scholar
  13. 13.
    Heng LY, Chern LH, Ahmad M (2002) A hydrogen ion-selective sensor based on non-plasticised methacrylic-acrylic membranes. Sensors 2(8):339–346CrossRefGoogle Scholar
  14. 14.
    Heng LY, Hall EAH (2000) Methacrylic-acrylic polymers in ion-selective membranes: achieving the right polymer recipe. Anal Chim Acta 403(1–2):77–89CrossRefGoogle Scholar
  15. 15.
    Buck RP, Lindner E (1994) Recommendations for nomenclature of ion-selective electrodes (IUPAC recommendations 1994). Pure and Applied Chemistry 66(12):2527–2536CrossRefGoogle Scholar
  16. 16.
    Bakker E, Pretsch E, Buhlmann P (2000) Selectivity of potentiometric ion sensors. Anal Chem 72(6):1127–1133CrossRefGoogle Scholar
  17. 17.
    Piao MH, Yoon JH, Gerok J, Shim YB (2003) Characterization of all solid state hydrogen ion selective electrode based on PVC-SR hybrid membranes. Sensors 3(6):192–201CrossRefGoogle Scholar
  18. 18.
    Bobacka J (1999) Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal Chem 71(21):4932–4937CrossRefGoogle Scholar
  19. 19.
    Fibbioli M, Morf WE, Badertscher M, de Rooij NF, Pretsch E (2000) Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 12(16):1286–1292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gastón A. Crespo
    • 1
  • Derese Gugsa
    • 1
  • Santiago Macho
    • 1
  • F. Xavier Rius
    • 1
  1. 1.Department of Analytical and Organic ChemistryUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations