Analytical and Bioanalytical Chemistry

, Volume 396, Issue 3, pp 953–961 | Cite as

Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation

  • Darrell R. Boverhof
  • Raymond M. David


Nanotechnology is a rapidly emerging field of great interest and promise. As new materials are developed and commercialized, hazard information also needs to be generated to reassure regulators, workers, and consumers that these materials can be used safely. The biological properties of nanomaterials are closely tied to the physical characteristics, including size, shape, dissolution rate, agglomeration state, and surface chemistry, to name a few. Furthermore, these properties can be altered by the medium used to suspend or disperse these water-insoluble particles. However, the current toxicology literature lacks much of the characterization information that allows toxicologists and regulators to develop “rules of thumb” that could be used to assess potential hazards. To effectively develop these rules, toxicologists need to know the characteristics of the particle that interacts with the biological system. This void leaves the scientific community with no options other than to evaluate all materials for all potential hazards. Lack of characterization could also lead to different laboratories reporting discordant results on seemingly the same test material because of subtle differences in the particle or differences in the dispersion medium used that resulted in altered properties and toxicity of the particle. For these reasons, good characterization using a minimal characterization data set should accompany and be required of all scientific publications on nanomaterials.


Nanotoxicology Nanomaterial characterization Nanomaterials Nanotoxicity 


  1. 1.
    Murdock RC et al (2008) Toxicol Sci 101(2):239–253CrossRefGoogle Scholar
  2. 2.
    Guo L et al (2008) Small 4(6):721–727CrossRefGoogle Scholar
  3. 3.
    Holsapple MP et al (2005) Toxicol Sci 88(1):12–17CrossRefGoogle Scholar
  4. 4.
    Oberdorster G et al (2005) Part Fibre Toxicol 2:8CrossRefGoogle Scholar
  5. 5.
    Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) (2006) The appropriateness of existing methodologies to assess the potential risk associated with engineered and adventitious products of nanotechnology.
  6. 6.
    Environmental Defense Fund and DuPont (2007) Nano risk framework.
  7. 7.
    Borm P et al (2006) Toxicol Sci 90(1):23–32CrossRefGoogle Scholar
  8. 8.
    Xia T et al (2008) ACS Nano 2(10):2121–2134CrossRefGoogle Scholar
  9. 9.
    Hardman R (2006) Environ Health Perspect 114(2):165–172Google Scholar
  10. 10.
    Poland CA et al (2008) Nat Nanotechnol 3(7):423–428CrossRefGoogle Scholar
  11. 11.
    Maxim LD et al (2006) Regul Toxicol Pharmacol 46(1):42–62CrossRefGoogle Scholar
  12. 12.
    Ma-Hock L et al (2007) Inhal Toxicol 19(10):833–848CrossRefGoogle Scholar
  13. 13.
    Baron PA et al (2008) Inhal Toxicol 20(8):751–760CrossRefGoogle Scholar
  14. 14.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Environ Health Perspect 113(7):823–839CrossRefGoogle Scholar
  15. 15.
    Warheit DB et al (2004) Toxicol Sci 77(1):117–125CrossRefGoogle Scholar
  16. 16.
    Sager TM, Castranova V (2009) Part Fibre Toxicol 6:5CrossRefGoogle Scholar
  17. 17.
    Oberdorster G et al (1990) J Aerosol Sci 21:384–387CrossRefGoogle Scholar
  18. 18.
    Glory J et al (2007) J Nanosci Nanotechnol 7(10):3458–3462CrossRefGoogle Scholar
  19. 19.
    Rogers K et al (2009) In: The toxicologist—Society of Toxicology annual meeting 2009 abstractsGoogle Scholar
  20. 20.
    Sager TM, Kommineni C, Castranova V (2008) Part Fibre Toxicol 5:17CrossRefGoogle Scholar
  21. 21.
    Stoeger T et al (2006) Environ Health Perspect 114(3):328–333Google Scholar
  22. 22.
    Wittmaack K (2007) Environ Health Perspect 115(2):187–194CrossRefGoogle Scholar
  23. 23.
    Warheit DB et al (2007) Toxicol Sci 95(1):270–280CrossRefGoogle Scholar
  24. 24.
    Warheit DB et al (2006) Toxicol Sci 91(1):227–236CrossRefGoogle Scholar
  25. 25.
    Oberdorster G, Oberdorster E, Oberdorster J (2007) Environ Health Perspect 115(6):A290CrossRefGoogle Scholar
  26. 26.
    Stoeger T et al (2007) Environ Health Perspect 115(6):A290–291 author reply A291–292Google Scholar
  27. 27.
    Wittmaack K (2007) Environ Health Perspect 115(6):A290–291 author reply A291–292CrossRefGoogle Scholar
  28. 28.
    Warheit DB et al (2007) Toxicol Lett 171(3):99–110CrossRefGoogle Scholar
  29. 29.
    Ahamed M et al (2008) Toxicol Appl Pharmacol 233(3):404–410CrossRefGoogle Scholar
  30. 30.
    Hauck TS, Ghazani AA, Chan WC (2008) Small 4(1):153–159CrossRefGoogle Scholar
  31. 31.
    Jani P et al (1990) J Pharm Pharmacol 42(12):821–826Google Scholar
  32. 32.
    Jani PU et al (1996) J Drug Target 4(2):87–93CrossRefGoogle Scholar
  33. 33.
    Florence AT et al (1995) J Drug Target 3(1):65–70CrossRefGoogle Scholar
  34. 34.
    Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Toxicol Appl Pharmacol 234(2):222–235CrossRefGoogle Scholar
  35. 35.
    Donaldson K et al (2009) Part Fibre Toxicol 6:13CrossRefGoogle Scholar
  36. 36.
    Renwick LC et al (2004) Occup Environ Med 61(5):442–447CrossRefGoogle Scholar
  37. 37.
    Barlow PG et al (2005) Part Fibre Toxicol 2:11CrossRefGoogle Scholar
  38. 38.
    Brunner TJ et al (2006) Environ Sci Technol 40(14):4374–4381CrossRefGoogle Scholar
  39. 39.
    Sayes CM, Warheit D (2008) Int J Nanotechnol 5(1):15–29CrossRefGoogle Scholar
  40. 40.
    Barnes CA et al (2008) Nano Lett 8(9):3069–3074CrossRefGoogle Scholar
  41. 41.
    Singh N et al (2009) Biomaterials 30(23–24):3891–3914CrossRefGoogle Scholar
  42. 42.
    Warheit DB (2008) Toxicol Sci 101(2):183–185CrossRefGoogle Scholar
  43. 43.
    Powers KW et al (2006) Toxicol Sci 90(2):296–303CrossRefGoogle Scholar
  44. 44.
    Erickson BE (2008) Chem Eng News 86(50):25–26Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Toxicology & Environmental Research and ConsultingThe Dow Chemical CompanyMidlandUSA
  2. 2.BASF CorporationFlorham ParkUSA

Personalised recommendations