Electrochemical reduction of the iodinated contrast medium iomeprol: iodine mass balance and identification of transformation products

  • Christian Zwiener
  • Thomas Glauner
  • Jochen Sturm
  • Michael Wörner
  • Fritz H. Frimmel
Original Paper


Potentiostatic-controlled electrochemical reduction of iomeprol was used to deiodinate iomeprol (IMP), a representative of the iodinated X-ray contrast media. The reduction process was followed by product analysis with liquid chromatography-electrospray ionization-tandem mass spectrometry and ion chromatography-inductively coupled plasma-mass spectrometry. The identification is mainly based on the interpretation of the mass fragmentation. The product analysis showed a rather selective deiodination process with the successive occurrence of IMP-I, IMP-2I, IMP-3I, and a transformation product (TP), respectively. The TP was formed from IMP-3I by a further cleavage of an amide bond and release of a (C = O)CHOH group from the side chain of IMP. The iodine mass balance on the basis of IMP and iodide showed a gap of about 26% at the beginning of the electrolysis process which could be completely closed by taking the intermediates IMP-I and IMP-2I into consideration. This means that the major intermediates and the TPs were considered and that the reduction process is a rather selective one to remove organically bound iodine from X-ray contrast media. An attractive application area would be the electrochemical deiodination of X-ray contrast media in urine of patients or hospital effluents.

Mass fragmentation of iomeprol and its deiodination products


Electrolysis Cathodic dehalogenation Iodine mass balance Mass-spectrometric fragmentation 



We acknowledge Altana for providing us with an IMP standard and the technical support by R. Sembritzki for IC-ICP-MS measurements and E. Karle and R. Peschke for LC-ESI-MS-MS measurements.


  1. 1.
    Perez S, Barcelo D (2007) Anal Bioanal Chem 387:1235–1246CrossRefGoogle Scholar
  2. 2.
    Putschew A, Miehe U, Tellez AS, Jekel MP (2007) Water Sci Technol 56(11):159–165CrossRefGoogle Scholar
  3. 3.
    Ternes TA, Bonerz M, Herrmann N, Teiser B, Andersen HR (2007) Chemosphere 66:894–904CrossRefGoogle Scholar
  4. 4.
    Ternes TA, Hirsch R (2000) Environ Sci Technol 34:2741–2748CrossRefGoogle Scholar
  5. 5.
    Putschew A, Schittko S, Jekel M (2001) J Chromatogr A 930:127–134CrossRefGoogle Scholar
  6. 6.
    Putschew A, Wischnak S, Jekel M (2000) Sci Total Environ 255:129–134CrossRefGoogle Scholar
  7. 7.
    Hirsch R, Ternes TA, Lindart A, Haberer K, Wilken R-D (2000) Fresenius’ J Anal Chem 366:835–841CrossRefGoogle Scholar
  8. 8.
    Schulz M, Löffler D, Wagner M, Ternes T (2008) Environ Sci Technol 42:7207–7217CrossRefGoogle Scholar
  9. 9.
    Huber MM, Goebel A, Joss A, Hermann N, Loeffler D, Mcardell CS, Ried A, Siegrist H, Ternes TA, von Gunten U (2005) Environ Sci Technol 39:4290–4299CrossRefGoogle Scholar
  10. 10.
    Doll T, Frimmel FH (2005) Catal Today 101:195–202CrossRefGoogle Scholar
  11. 11.
    Busetti F, Linge KL, Blythe JW, Heitz A (2008) J Chromatogr A 1213:200–208CrossRefGoogle Scholar
  12. 12.
    Petersen MA, Sale TC, Reardon KF, Kenneth F (2007) Chemosphere 67:1573–1581CrossRefGoogle Scholar
  13. 13.
    Liu Z, Arnold RG, Betterton EA, Festa KD (1999) Environ Eng Sci 16:1–13CrossRefGoogle Scholar
  14. 14.
    Chetty R, Christensen PA, Golding BT, Scott K (2004) Appl Catal A Gen 271:185–194CrossRefGoogle Scholar
  15. 15.
    Korshin GV, Jensen MD (2001) Electrochim Acta 47:747–751CrossRefGoogle Scholar
  16. 16.
    Mubarak MS, Peters DG (1996) J Electrochem Soc 143:3833–3838CrossRefGoogle Scholar
  17. 17.
    Poizot P, Laffont-Dantras L, Simonet J (2008) J Electroanal Chem 622:204–210CrossRefGoogle Scholar
  18. 18.
    Paddon CA, Bhatti FL, Donohoe TJ, Compton RG (2007) J Phys Org Chem 20:115–121CrossRefGoogle Scholar
  19. 19.
    Schnabel C, Wörner M, Gonzalez B, del Olmo I, Braun AM (2001) Electrochim Acta 47:719–727CrossRefGoogle Scholar
  20. 20.
    Putschew A, Jekel M (2003) Rapid Commun Mass Spectrom 17:2279–2282CrossRefGoogle Scholar
  21. 21.
    Sacher F, Raue B, Brauch H-J (2005) J Chromatogr A 1085:117–123CrossRefGoogle Scholar
  22. 22.
    Cheng H, Scott K, Christensen PA (2003) J Electrochem Soc 150:D17–D24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Christian Zwiener
    • 1
  • Thomas Glauner
    • 1
  • Jochen Sturm
    • 2
    • 3
  • Michael Wörner
    • 3
  • Fritz H. Frimmel
    • 1
  1. 1.Engler-Bunte-Institut, Chair of Water ChemistryUniversität Karlsruhe (TH)KarlsruheGermany
  2. 2.Daimler AGStuttgartGermany
  3. 3.Institute of Process Engineering in Life Sciences, Chair of Biomolecular Separation EngineeringUniversity of Karlsruhe (TH)KarlsruheGermany

Personalised recommendations